• Title/Summary/Keyword: Steady State

Search Result 5,338, Processing Time 0.038 seconds

Development of a Real-Time Steady State Detector of a Heat Pump System to Develop Fault Detection and Diagnosis System (열펌프의 고장진단시스템 구축을 위한 정상상태 진단기 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2070-2075
    • /
    • 2008
  • Identification of steady-state is the first step in developing a fault detection and diagnosis (FDD) system. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representing measurements were selected as key features for steady-state detection. The optimized moving window size and the feature thresholds was suggested through startup transient test and no-fault steady-state test. Performance of the steady-state detector was verified during indoor load change test. From the research, the general methodology to design a moving window steady-state detector was provided for vapor compression applications.

  • PDF

The Time Correlation Function Near (and at) a Stable Steady State, When a Chemical System Relaxes from the Unstable Steady State$^*$

  • Lee, Dong-Jae;Ryu, Moon-Hee;Lee, Jong-Myung
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.91-95
    • /
    • 1985
  • The dynamic properties near (and at) a stable steady state are discussed, when a chemical system relaxes from the unstable steady state. The time-dependent correlation length for the fluctuating variable near a stable steady state is explicitly obtained by introducing the probability average for the variable satisfying the rate equation. The study is carried out about the effect of nonlinearity on the correlation length near (and at) a stable steady state.

STABILITY OF POSITIVE STEADY-STATE SOLUTIONS IN A DELAYED LOTKA-VOLTERRA DIFFUSION SYSTEM

  • Yan, Xiang-Ping;Zhang, Cun-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.715-731
    • /
    • 2012
  • This paper considers the stability of positive steady-state solutions bifurcating from the trivial solution in a delayed Lotka-Volterra two-species predator-prey diffusion system with a discrete delay and subject to the homogeneous Dirichlet boundary conditions on a general bounded open spatial domain with smooth boundary. The existence, uniqueness and asymptotic expressions of small positive steady-sate solutions bifurcating from the trivial solution are given by using the implicit function theorem. By regarding the time delay as the bifurcation parameter and analyzing in detail the eigenvalue problems of system at the positive steady-state solutions, the asymptotic stability of bifurcating steady-state solutions is studied. It is demonstrated that the bifurcating steady-state solutions are asymptotically stable when the delay is less than a certain critical value and is unstable when the delay is greater than this critical value and the system under consideration can undergo a Hopf bifurcation at the bifurcating steady-state solutions when the delay crosses through a sequence of critical values.

Real-time steady state identification technology of a heat pump system to develop fault detection and diagnosis system (열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.282-287
    • /
    • 2008
  • Identification of steady-state is the first step in developing a fault detection and diagnosis (FDD) system. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representing measurements were selected as key features for steady-state detection. The optimized moving window size and the feature thresholds was suggested through startup transient test and no-fault steady-state test. Performance of the steady-state detector was verified during indoor load change test. From the research, the general methodology to design a moving window steady-state detector was provided for vapor compression applications.

  • PDF

A simplified method to determine the chloride migration coefficient of concrete by the electric current in steady state

  • Lin, K.T.;Yang, C.C.
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.117-133
    • /
    • 2014
  • This study presents a rapid method for determining the steady state migration coefficient of concrete by measuring the electric current. This study determines the steady state chloride migration coefficient using the accelerated chloride migration test (ACMT). There are two stages to obtain the chloride migration coefficient. The first stage, the steady-state condition was obtained from the initial electric current at the beginning of ACMT. The second stage, the average electrical current in the steady state condition was used to determine the steady state chloride migration coefficient. The chloride migration coefficient can be determined from the average steady state current to avoid sampling and analyzing chlorides during the ACMT.

On the Steady State Availability of Age-Dependent Minimal Repair Model

  • Cha, Ji-Hwan;Kim, Jae-Joo
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.17-22
    • /
    • 2002
  • Availability is an important characteristic of a repairable component. Iyer(1992) obtained the 'limiting efficiency'(not the `steady state availability') of the age-dependent minimal repair model which was first considered by Block et al.(1985). However the existence of the steady state availability of the model has not been reported. In this note, the existence of the steady state availability of the model is shown and a brief remark on the importance of the property is given.

  • PDF

Controller design to diminish oscillation and steady state error in water temperature systems with drive delay

  • Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1888-1893
    • /
    • 1991
  • Systematic design of a controller for a water temperature system was considered, with the intention of devising an accurate control experiment. The results of an experiment using a water temperature system based on the pole placement regulator showed water temperature oscillation and steady state error. This paper proposed a. method for eliminating both the oscillation and the steady state error. The oscillation was eliminated by a drive delay compensation technique, in which a future state value of the system was predicted through a real time computer simulation. The steady state error was eliminated by an steady state error correction technique, in which an actual steady state heatrate in the system model was replaced by an imaginary heatrate. By combining these two techniques, we obtained an experimental result for water temperature control of 0.01 (.deg. C) accuracy. Furthermore, the proposed method was evaluated relatively by comparing the experimental results using several other methods and proved to be the most accurate and convenient control method for the delay system.

  • PDF

Verification of the steady-state Nyquist theorem by Monte-Carlo method in n-i-n structures (N-I-N 구조에서 Monte-Carlo 방법에 의한 steady-state Nyquist 정리의 검증)

  • 이기영;모경구;민홍식;박영준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.63-71
    • /
    • 1993
  • To verify validity of the steady-state Nyquist theorem and the steady-state Nyquist theorem with hot carrier effects in semiconductor devices, we calculate thermal noise in n-i-n structures using both the steady-state Nyquist theorem and the Monte-Carlo method, and compare the results from these two-methods. When the carrier temperature is not far from the lattice temperature, the results from both methods agree with each other very well, but in the hot carrier regime there are some discrepancies. Our results support the argument that for MOSFETs and MESFETs operating in the linear region, the channel thermal noise should be explained by the steady-state Nyquist theorem rather than by the existing theories.

  • PDF

Steady-State Solution for Solar Wind Electrons by Spontaneous Emissions

  • Kim, Sunjung;Yoon, Peter H.;Choe, G.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.44.2-44.2
    • /
    • 2016
  • The solar wind electrons are made of three or four distinct components, which are core Maxwellian background, isotropic halo, and super-halo (and sometimes, highly field-aligned strahl component which can be considered as a fourth element). We put forth a steady-state model for the solar wind electrons by considering both the steady-state particle and wave kinetic equations. Since the steady-state solar wind electron VDFs and the steady-state wave fluctuation spectrum are related to each other, we also investigate the complete fluctuation spectra in the whistler and Langmuir frequency ranges by considering halo- and superhalo-like model electron VDFs. It is found that the energetic electrons make important contributions to the total emission spectrum. Based on this, we complete the steady-state model by considering both the whistler and Langmuir fluctuations. In particular, the Langmuir fluctuation plays an important role in the formation and maintenance of nonthermal electrons.

  • PDF

Technology for Real-Time Identification of Steady State of Heat-Pump System to Develop Fault Detection and Diagnosis System (열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2010
  • Identification of a steady state is the first step in developing a fault detection and diagnosis (FDD) system of a heat pump. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm, which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representative measurements were selected as key features for steady-state detection. The optimized moving-window size and the feature thresholds were decided on the basis of a startup-transient test and no-fault steady-state test. Performance of the steady-state detector was verified during an indoor load-change test. In this study, a general methodology for designing a moving-window steady-state detector for applications involving vapor compression has been established.