• Title/Summary/Keyword: Steel for Cold Forming

Search Result 90, Processing Time 0.026 seconds

Design of Cross Wedge Rolling Die for a Non-heat-treated Cold Steel using CAD and CAE (CAD/CAE를 이용한 냉간 비조질강용 회전전조 금형설계)

  • Lee H. W.;Yoon D. J.;Lee G. A.;Choi S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.400-403
    • /
    • 2004
  • A non-heat기leafed steel does not need quenching and tempering processes that are called a heat treatment differently from conventional steel. Since the tensile strength of this steel is higher than 900MPa, a conventional forming process should be changed to incremental forming process such as a cross wedge rolling that requires lower load capacity than conventional ones. In this paper, the cold cross wedge rolling (CWR) die has been designed using CAD/CAE In order to produce near-net-shaped component of ball stud of non-heat-treated cold steel. Finite element analyses were applied in order to investigate process parameters of CWR. Results provide that the stretching angle and the forming angie at knifing zone in CWR process is important parameter to be the stable process under the low friction coefficient condition.

  • PDF

Forming load and stress analysis according to cold forming process of microalloyed forging steel (비조질강의 냉간 성형공정에 따른 성형하중 및 금형응력 해석)

  • Lee S.H.;Kim J.H.;Park N.K.;Lee Y.S.;Suh D.W.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.405-408
    • /
    • 2004
  • The forming load and the stress applied to dies during cold forming of automotive part using microalloyed forging steel are examined with finite element analysis. The forming load and the stress applied to dies at each process step are investigated for two types of forming process. The changes in forming process significantly affect the variation of firming load and the stress at each process step, thus it is considered that the die lift will be remarkably changed with the type of forming process, therefore optimal process design is necessary to obtain an increased the die life and to make the die life uniform at each process step.

  • PDF

Plastic Forming of Rolling Bearing Steel Components (구름 베어링 부품의 소성가공)

  • 송복한;박창남
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.83-87
    • /
    • 2003
  • Current state of plastic processes of steel bearing parts is surveyed. According to the advances in plastic forming technologies and their great advantage to mass production, plastic processes are adopted in manufacturing majority of bering parts. The rings are forged or ring rolled and the rolling elements, i.e, balls or rollers are cold formed before fine machining. Bearing's steel retainers are mainly press formed using cold rolled seel strips. Including the general explanation about above processes, some details of forging technology, control of forging temperature and after cooling process, and examples of computer simulation are described.

Effects of Controlled Cooling on Microstructures and Mechanical Properties of a Steel for Cold Forming (냉간성형용 강의 미세조직과 기계적성질에 미치는 제어냉각의 영향)

  • Kim N. G.;Park S. D.;Kim B. O.;Choi H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.391-394
    • /
    • 2004
  • The main purpose of the present study has been placed on investigating the effects of controlled cooling on the microstructures and mechanical properties of 0.2C-0.2Si-0.8Mn-B steel for cold forming. The steel was processed in steel making factory(EAF, VD) and casted to $\Box160$ billet then reheated in walking beam furnace and rolled to coil, rolling stock was acceleratly cooled before coiling. Microstructual observation, tensile test and charpy impact tests were conducted. The mechanical properties and microsture of the steel were changed by cooling condition. The grain size of rolled product decreased with increasing cooling rate, resulting in increase of impact toughness and tensile strength, elongation and reduction of area . From the result of this study, it is conformed that mechanical properties and microstructure of 0.2C-0.2Si-0.8Mn-B steel for cold forming were enhanced by accelerated cooling.

  • PDF

Study of Material Properties of High Strength Microalloyed Steel for Cold Forming by Controlled Rolling and Cooling Technology (제어압연.제어냉각기술로 제조된 냉간성형용 비조질강의 소재특성)

  • Kim, N.G.;Park, S.D.;Kim, B.O.;An, J.Y.;Choi, H.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.603-608
    • /
    • 2006
  • The main purpose of the present study has been placed on investigating the mechanical properties and microstructures of C-Si-Mn-V steels for cold forming manufactured by controlled rolling and cooling technology. The steels were manufactured in electric arc furnace (EAF) and casted to $160{\times}160mm$ billet. The billets were reheated in walking beam furnace and rolled to coil, the stocks were rolled by Controlled Rolling and Cooling Technology (CRCT), so rolled at low temperature by water spraying applied in rolling stage and acceleratly cooled before coiling. Rolled coils were cold drawed to the degree of 16%, 27% of area reduction respectively without heat treatment. Microstructual observation, tensile test, compression test and charpy impact tests were conducted. The mechanical properties of the steels were changed by area reduction of cold drawing and it is founded that there are optimum level of cold drawing to minimize compression stress for these steels. From the result of this study, it is conformed that $80kg_{f}/mm^{2},\;90kg_{f}/mm^{2}$ grade high strength microalloyed steel for cold forming are developed by accelerated cooling and optimum cold drawing.

Study on the Cold Formability of Drawn Non-heat Treated Steels (신선 가공된 열처리 생략강의 냉간 성형성에 대한 연구)

  • 박경수;박용규;이덕락;이종수
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.364-369
    • /
    • 2003
  • Non-heat treated steels are attractive in the steel-wire industry since the spheroidization and quenching-tempering treatment are not involved during the processing. However, non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, three different steels such as dual phase steel, low-Si steel, and ultra low carbon bainitic steel were used to study their mechanical properties and the cold formability. The cold formability of three steels was investigated by estimating the deformation resistance and the forming limit. The deformation resistance was estimated by calculating the deformation energy, and the forming limit was evaluated by measuring the critical strain revealing crack initiation at the notch tip of the specimens. The results showed that deformation resistance was the lowest in the low-Si steel, and the forming limit strains of ultra low carbon bainitic steel and low-Si steel were higher than that of commercial SWRCH45F steel.

Development of High Strength Microalloyed Steel for Cold Forming by Controlled Rolling and Cooling Technology (제어압연${\cdot}$제어냉각기술을 이용한 고강도 냉간성형용 비조질강의 개발)

  • Kim N. G.;Park S. D.;Kim B. O.;Choi H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.321-324
    • /
    • 2005
  • The main purpose of the present study has been placed on investigating the effects of controlled rolling and cooling on the microstructures and mechanical properties of C-Si-Mn-V steels for cold forming. The steels were manufactured in vacuum induction melting(VIM) furnace and casted to 1.1ton Ingots and the ingots were forged to $\Box150$ billet. The forged billets were reheated in walking beam furnace and rolled to coil, the stocks were rolled by Controlled Rolling and Cooling Technology (CRCT), so rolled at low temperature by water spraying applied in rolling stage and acceleratly cooled before coiling. Rolled coils were cold drawed to the degree of $27\%$ of area reduction without heat treatment. Microstructual observation, tensile test, compression test and charpy impact tests were conducted. The mechanical properties of the steels were changed by area reduction of cold drawing and it is founded that there are optimum level of cold drawing to minimize compression stress for these steels. From the result of this study, it is conformed that mechanical properties and microstructure of C-Si-Mn-V steels for cold forming were enhanced by accelerated cooling and founded optimum level of cold drawing.

  • PDF

Study on the Cold Formability of Drawn Non-heat Treated Steels (신선 가공된 열처리 생략강의 냉간 성형성에 대한 연구)

  • 박경수;박용규;이덕락;이종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.307-310
    • /
    • 2003
  • Non-heat treated steels are attractive in the steel-wire industry since the spheroidization and quenching-tempering treatment are not involved during the processing. In this study, three different steels such as dual phase steel, low-Si steel, and ultra low carbon bainitic steel were used to investigate their deformation resistance and forming limit. Deformation resistance was estimated by calculating the deformation energy and the forming limit was evaluated by measuring the critical strain revealing crack initiation at the notch tip of the specimens. The results showed that deformation resistance was the lowest in the low-Si steel, and the forming limit strain was the highest in the ultra low carbon bainitic steel.

  • PDF

Effect of Cold Forming Method on Drawability Trunk Floor Panel (냉각성형공법이 트렁크 플로어 드로잉성에 미치는 영향)

  • 최치수;최이천;오영근;이정우;이항수
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.123-129
    • /
    • 2001
  • This study is to investigate the effects of cold forming method with steel sheet of SCP3C to improve continuous productivity. Experiments were carried out in various working conditions, such as the number of stamping and the punch temperature. The effects of the punch temperature and the number of stamping on drawability of steel sheet of SCP3C as well as clearance and draw-in in the number of stamping were examined and discussed. More improvement of continuous productivity in case of cold stamping rather than by conventional stamping at room temperature is obtained. The optimum forming condition for drawing trunk floor panel of SCP3C is shown as the punch is cooled by coolant of $-5^{\circ}C$ and at the same time both the die and the blankholder are heated by stamping and frictional heat.

  • PDF

Experimental study on innovative sections for cold formed steel beams

  • Dar, M.A.;Yusuf, M.;Dar, A.R.;Raju, J.
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1599-1610
    • /
    • 2015
  • Cold Formed Steel members are widely used in today's construction industry. However the structural behavior of light gauge high strength cold formed steel sections characterized by various buckling modes are not yet fully understood. Because of their simple forming and easy connections, the commonly used cold formed sections for beams are C and Z. However both these sections suffer from certain buckling modes. To achieve much improved structural performance of cold formed sections for beams both in terms of strength and stiffness, it is important to either delay or completely eliminate their various modes of buckling. This paper presents various innovative sectional profiles and stiffening arrangements for cold formed steel beams which would successfully contribute in delaying or eliminating various modes of premature buckling, thus considerably improving the load carrying capacity as well as stiffness characteristics of such innovative cold formed sections compared to conventional cold formed steel sections commonly used for beams.