• Title/Summary/Keyword: Steel substrate

Search Result 470, Processing Time 0.026 seconds

Study on Flaking Resistance of Hot-dip Galvanizing Coating

  • Taixiong, Guo;Ping, Yuan;Yongqing, Jin;chunfu, Liu;Wei, Li
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.143-146
    • /
    • 2010
  • For the issue of flaking of the hot-dip galvanizing coating during drawing, the microcosmic characteristics of the coatings have been analyzed and experiments have been done to investigate the influence of coating thickness, Al content and steel substrate strength on its flaking-resistance. The results show that the fact of flaking is that the coating partially flaked off at the position far away from interface of steel substrate and coating, and not entirely flaked off from steel substrate because of poor adhesion. The flaking-resistance of coating decreases with the increasing of coating thickness and steel substrate strength, and increases with the increasing of Al content in coating at the same experimental conditions.

The deposition characteristics of the diamond films deposited on Si, Inconel 600 and steel by microwave plasma CVD method (마이크로파 플라즈마 CVD 방법으로 Si, Inconel 600 및 Steel 모재위에 증착된 다이아몬드 박막의 증착특성)

  • 김현호;김흥회;이원종
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.133-141
    • /
    • 1995
  • The deposition characteristics of diamond films were investigated for three different substrates : Si, Inconel 600 and steel. Diamond films were prepared by microwave plasma CVD method using $CH_4$, $H_2$ and $O_2$ as reaction gases. The deposited films were analyzed with SEM, Raman spectroscopy and ellipsometer. For Si substrate, diamond films were successfully obtained for most of the deposition conditions used in this study. As the $CH_4$ flow rate decreased and the $O_2$ flow rate increased, the quality of the film was improved due to the reduced non-diamond phase in the film. For Inconel 600 substrate, the surface pretreatment with diamond powders was required to deposit a continuous diamond film. The films deposited at temperatures of $600^{\circ}C$ and $700^{\circ}C$ had mainly diamond phase, but they were peeled off locally due to the difference in the thermal expansion coefficient between the substrate and the deposited films. The films deposited at $500^{\circ}C$ and $850^{\circ}C$ had only the graphitic carbon phase. For steel substrate, all of the films deposited had only the graphitie carbon phase. We speculated that the formation of diamond nuclei on the steel substrate was inhibited due to the diffusion of carbon atoms into the steel substrate which has a large amount of carbon solubility.

  • PDF

Mechanical and electro-mechanical analysis in differently stabilized GdBCO coated conductor tapes with stainless steel substrate

  • Nisay, Arman R.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.29-33
    • /
    • 2013
  • The understanding of the strain dependence of critical current, $I_c$, in the reversible region is important for the evaluation of the performance of coated conductor (CC) tapes in practical applications. In this study, the stress/strain tolerance of $I_c$ in GdBCO CC tapes with stainless steel substrate stabilized by additional Cu and brass laminate was analyzed quantitatively through $I_c$-strain measurement at 77 K under self-field. The variation in irreversible strain limits of CC tapes by the addition of stabilizing layers was analyzed through the consideration of the pre-strain induced on the GdBCO coating film. The results were then compared with the ones previously reported for GdBCO CC tapes with Hastelloy substrate. As a result, GdBCO CC tapes with stainless steel substrate showed much higher strain tolerance of $I_c$ as compared with those adopting Hastelloy substrate.

Large-scale synthesis of the carbon coils using stainless steel substrate

  • Jeon, Young-Chul;Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.296-301
    • /
    • 2013
  • Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under the thermal chemical vapor deposition system. A 304-type stainless steel was used as a substrate with nickel powders as the catalyst. The surface of the substrate was pretreated using a sand paper or a mechanical drill to enhance the production yield of the carbon coils. The characteristics of the deposited carbon nanomaterials on the substrates were investigated according to the surface state on the stainless steel substrate. The protrusion induced by the grooves on the substrate surface could enhance the formation of the carbon nanomaterials having the coils geometries. The cause for the enhancement of the carbon coils formation by the grooves was suggested and discussed with the surface energies for the interaction between as-growing carbon elements. Finally, we could obtain the massive production yield of the carbon coils by the surface pretreatment using SiC sand papers on the several tens grooved stainless steel substrate.

Study on Electro-Mechanical Characteristics of Array Type Capacitive Pressure Sensors with Stainless Steel Diaphragm and Substrate (스테인리스 강 박막 및 기판을 이용한 배열형 정전용량 압력센서의 전기 기계적 특성연구)

  • Lee, Heung-Shik;Chang, Sung-Pil;Cho, Chong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1369-1375
    • /
    • 2006
  • In this work, mechanical characteristics of stainless steel diaphragm have been studied as a potential robust substrate and a diaphragm material for micromachined devices. Lamination process techniques combined with traditional micromachining processes have been adopted as suitable fabrication technologies. To illustrate these principles, capacitive pressure sensors based on a stainless steel diaphragm have been designed, fabricated and characterized. The fabrication process for stainless steel micromachined devices keeps the membrane and substrate being at the environment of 8.65MPa pressure and $175^{\circ}C$ for a half hour and then subsequently cooled to $25^{\circ}C$. Each sensor uses a stainless steel substrate, a laminated stainless steel film as a suspended movable plate and a fixed, surface micromachined back electrode of electroplated nickel. The finite element method is adopted to investigate residual stresses formed in the process. Besides, out-of-plane deflections are calculated under pressures on the diaphragm. The sensitivity of the device fabricated using these technologies is 9.03 ppm $kPa^{-1}$ with a net capacitance change of 0.14 pF over a range 0$\sim$180 kPa.

Micro-scale Observation of Corrosion of Hot-Dip Aluminized 11% Cr Stainless Steel

  • Cho, Min-Seung;Park, Choong-Nyeon;Park, Chan-Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.73-77
    • /
    • 2019
  • Hot-dip aluminized coating has been widely used to protect steel substrate against corrosion. In this study, the corrosion behavior of hot-dip aluminized type 409L (11% Cr) stainless steel (SS) was investigated using macro- and micro-scale polarization tests. An Al-Fe-Si alloy layer that was formed due to inter-diffusion of alloying elements between Al coating and SS substrate was observed between Al coating and 409L SS substrate. In both macro- and micro-scale polarization tests, the corrosion potential ($E_{corr}$) of the 409L SS substrate was much nobler than that of the Al coating and alloy layer. $E_{corr}$ of the alloy layer was between that of Al coating and 409L SS substrate. This indicates that the alloy layer can act as a buffer between the more active Al coating and the nobler SS substrate for pit growth in aluminized SS. The presence of the alloy layer appears to be helpful in hindering pitting corrosion of aluminized SS.

Effect of Maunfacturing Conditions of Substrate on Phosphatability (인삼염처리성에 미치는 소재 제조조건 영향)

  • 김형준
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.5
    • /
    • pp.310-319
    • /
    • 1997
  • The purpose of this study is to investigate the effect of the specific alloying elements in steel such as Cr, Ni and Cu, and surface roughness of substrate with two different FCS temperature zones in the CAL process on the phosphatability of the cold-rolled sheet used for the drum in order to improve the zinec phosphating property. Phosphatability is dependent of the surface oxide and roughness on the substrate and can be indirectly improved by increasing surface roughness of the steel sheet. Basically, in order to obtain the good phosphatability, the low concentration of the retained elements such as Cr, Ni and Cu among the steel alloy elements should be required. Phosphatability of substrate with high concentration instead of the retained elements and surface roughness, however, can be effectively improved instead of low FSC temperature.

  • PDF

Formation of Diamond/Mo/Ni Multi-Layer on Steel Substrate (강 표면의 다이아몬드/몰리브데늄/니켈 복합층의 생성)

  • Lee, H.J.;J.I. Choe;Park, Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.37-37
    • /
    • 2002
  • Diamoncl/Mo/Ni multi-layers on SKH-51 steel substrate was prepared to improve the abrasive wear resistance of a tool and die by a commercial chemical vapor deposition unit and electro-plating. The diamond after 7 hour deposition had cuba-octahedral structure with 2~5$\mu\textrm{m}$ grains. The existence of non-ferrous metals such as chromium, nickel and molybdenum between diamond and SKH-51 substrate results in forming higher quality of diamond layer by retarding carbon diffusion in the diamond layer during deposition, and also improving hardness and wear resistance. Surface cracks on the film was sometimes observed by the difference of by the thermal expansion coefficients between the steel substrate and the deposited layers during cooling.

  • PDF

Electro-mechanical Property Evaluation of REBCO Coated Conductor Tape with Stainless Steel Substrate

  • Dedicatoria, M.J.;Shin, H.S.;Ha, H.S.;Oh, S.S.;Moon, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.20-23
    • /
    • 2010
  • In this study, the electromechanical property of REBCO coated conductor (CC) tape adopting a stainless steel substrate has been investigated. Sample was subjected to uniaxial tension and measured its mechanical properties at RT and 77 K. $I_c-{\varepsilon}_t$ relations was also studied in which the strain and stress corresponding to the 95% $I_c$ retention and reversible strain limit were measured. In addition, these results were compared to the case of conventional REBCO CC tape adopting a Hastelloy substrate. As a result, by adopting a stainless steel substrate comparable strength and good electromechanical property to Hastelloy one could be achieved.

Characteristics of corrosion fatigue strength of TiN coating steel (TiN 피복강재의 부식피로강도특성)

  • 김귀식;현경수;오맹종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.62-69
    • /
    • 1995
  • In order to investigate the effect of TiN coating on corrosion fatigue behavior of metal, the rotary bending corrosion fatigue tests were carried out in 3% NaCl solution by using the round bar specimens of high-speed steel, SKH-9, coated with TiN by PVD method. From the experimental results, fatigue strength of TiN coating steel in air was obvious improvement as compared with that of the substrate because of the restriction of dislocation movement in near surface of the substrate by hard thin film. In 3% NaCl solution, corrosion fatigue life of TiN coating specimen in high stress level was improvement same as in air. But in low stress level, corrosion fatigue life of TiN coating one was equivalent to that without coating, due to much crack initiated from corrosion pits formed at the substrate by failure of coating layer.

  • PDF