• Title/Summary/Keyword: Steelmaking

Search Result 119, Processing Time 0.026 seconds

Evaluation on Applicability of Copper and Steelmaking Slags for Use of Heavy Weight Aggregates in Marine Concrete Structure (동슬래그 및 제강슬래그의 해양 콘크리트용 중량 골재 사용성 평가)

  • Moon, Hoon;Jang, Bo-Kil;Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.345-352
    • /
    • 2017
  • Heavy weight concrete can be used in marine concrete structure to improve resistance against high wave energy. However, heavy weight aggregate, which is an indispensable material for heavy weight concrete, is difficult to be supplied in large quantities because its use is limited due to its high cost. In this work, the applicability of heavy weight by-products, copper and 3 month aged steelmaking slags, were evaluated as sources of heavy weight aggregate for marine concrete structures. Experimental results showed that copper slag was found to be a stable material for marine concrete structure. However, 3 month aged steelmaking slag showed significant expansion by $80^{\circ}$ water immersion test and ASTM C 1260 test. In addition, depth of chloride ion penetration in concrete was higher at which steelmaking slags were located. It was associated with porosity of steelmaking slag, and for this reason, steelmaking slag was not found to be suitable for marine concrete structure.

Influence of pH on Leaching Behavior of Phosphorous from Steelmaking Slag (제강슬래그에서 인의 침출 거동에 대한 pH의 영향)

  • Kim, Jeong-In;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.23-28
    • /
    • 2016
  • In this study, leaching process to extract phosphorus from the steelmaking slag was investigated for using the fertilizer resources of agriculture. In general, the phosphorus of steelmaking slag is formed as $C_2S-C_3P$ solid solution, and also, this solid solution is soluble in water more than the other phase in slag, and less than free CaO phase. In the present experiment, the influence of pH on the leaching behavior of various elements from the steelmaking slag was investigated by using multi-component steelmaking slag. When the pH was decreased, the concentration of Ca, Si, P and Fe in solution from the steelmaking slag was increased. Furthermore, at a pH of 3, the concentration of P ion in solution was decreased as leaching time increased. It is considered that the decrement of P was caused from the precipitation reaction between P ion and Fe ion in solution.

Hydrogen Behavior in the Steelmaking Process (제강공정에서 수소의 거동)

  • Shim, Sang-chul;Cho, Jung-wook;Hwang, Sang-taek;Kim, Kwang-chun
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.662-671
    • /
    • 2008
  • The behavior of hydrogen in the steel making process was investigated. The relation between the composition of ladle slag and hydrogen concentration in molten steel was considered. The hydrogen distribution ratio between ladle slag and molten steel was increased with increasing basicity of the slag; it was about 20 when the basicity of slag was 15. Hydroxyl capacity measured from the hydrogen distribution ratio between slag and the molten steel was comparatively corresponding to the value of hydroxyl capacity measured by the equilibrium reaction of slag and $H_2O$ gas. However, it is considerably different from the value calculated by regular solution model. The influence of hydrogen on a sticking type breakout is considered. The effect of hydrogen and $H_2O$ gas on the crystallization behavior of mold powder was investigated by DHTT (Dual hot thermocouple technique). As a result, it was proved that mold powder could be crystallized by $H_2O$ gas in the atmosphere. Therefore, it is concluded that $H_2O$ gas in the atmosphere can be a possible cause of the sticking type breakout that occasionally occurs in the continuous casting process.

Reduction of Stainless Steelmaking Dust by Microwave Heating (마이크로파 가열에 의한 스테인레스강 분진의 환원)

  • 반봉찬;조환종
    • Resources Recycling
    • /
    • v.2 no.4
    • /
    • pp.10-16
    • /
    • 1993
  • Reduction behavior of stainless steelmaking dust by microwave heating process was investigated using coke and charcoal as reducing agents. Pellet dust and stanless steelmaking dust pelletized with reducing agent were reduced by the heating upto $1000^{\circ}C$ in microwave oven. The results showed that charcoal and coke seemed effective in the reduction of metals from stainless steelmaking dust by microwave heating and charocal was found to be better than coke. Degree of reduction seemed similar with the power of 500W and 700W in microwave oven. Dusts were rapidly reduced within 20 minutes. Reducing degree decreased in the order of Fe>Ni>Cr.

  • PDF

Recycling of Ferrous Scraps (철스크랩의 리사이클링)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.3-16
    • /
    • 2020
  • This work provides an overview of the steel production process, pretreatment and tramp elements of scraps and recycling technology of dust generated from steelmaking process. Steel is the most common metal used by mankind, with the world production of crude steel in 2018 exceeding 1.8 billion tonnes. Recycling of ferrous scraps reduces CO2 emissions by about 42 % and saves about 60 % of energy, compared to production steel from iron ore. Steel scraps are usually recycled to both an electric arc furnace (EAF), scrap-based steelmaking and the basic oxygen furnace (BOF), in ore-based steelmaking. EAF steelmaking, which uses iron scrap as a main raw material, is changing to an energy-saving type with a device for preheating scrap. Dust generated from the steelmaking process is recycled in various ways in the steel mill to recover iron and zinc.

The Direct Recycling of Electric Arc Furnace Stainless Steelmaking Dust

  • Zhang, Chuanfu;Peng, Bing;Peng, Ji;Lobel, Jonathan;Kozinski, Janusz A.
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.404-408
    • /
    • 2001
  • This paper focuses on the pilot-scale investigation of direct recycling of electric arc furnace (EAF) stainless steelmaking dust. The direct recycling of EAF dust is to make pellets with the mixture of the dust and the reducing agent carbon, then introduce the pellets to the EAF. The valuable metals in the dust are reduced and get into the steel as the alloying elements. Experiments simulating direct recycling in an EAF were performed using an induction furnace. But it seems difficult to reduce all metal oxides in the dust so that some metal reducing agents added in the late stage of reduction process. The valuable metals in the dust were reduced partly by carbon and partly by metal reducing agent for the economical concern. The recovery of iron, chromium and nickel from the flue dust and the amount of metal oxides in the slag were measured. The results showed that the direct recycling of EAF stainless steelmaking dust is practicable. It wes also found that direct recycling of flue EAF stainless steelmaking dusts does not affect the chemistry and quality of stainless steel produced in the EAF. It is benefit not only for the environmental protection but also for the recovery of valuable metal resources in this way.

  • PDF

Assessment on the Transition of Arsenic and Heavy Metal from Soil to Plant according to Stabilization Process using Limestone and Steelmaking Slag (석회석과 제강슬래그를 이용한 오염토양 안정화에 따른 비소 및 중금속의 식물체 전이도 평가)

  • Koh, Il-Ha;Lee, Sang-Hwan;Lee, Won-Seok;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.63-72
    • /
    • 2013
  • This study estimated stabilization efficiency of As and heavy metal contaminated agricultural soil in abandoned mine through pot experiment. Also contaminants uptake of plant (lettuce) was compared as function of amendment (limestone, steelmaking slag and the mixture of these) addition. In soil solution analysis, concentration of contaminants in soil solutions which added limestone or steelmaking slag were lower than that of the mixture. Especially in As analysis, concentration with 5% (wt) addition of steelmaking slag showed the lowest value among those with other amendments. This seems that As stabilization happens through Fe adsorption during precipitation of Fe by pH increasing. Leachability of As in stabilized soil by TCLP was represented similar result with soil solution analysis. However leachability of heavy metals in stabilized soil was similar with that of non-stabilized soil due to dissolution of alkali precipitant by weak acid. Contaminants uptake rate by plant was also lower when limestone or steelmaking slag was used. However this study revealed that concentration of contaminants in soil solution didn't affect to the uptake rate of plant directly. Because lower $R^2$ (coefficient of determination) was represented in linear regression analysis between soil solution and plant.

Comparative Study of Estimation Methods of the Endpoint Temperature in Basic Oxygen Furnace Steelmaking Process with Selection of Input Parameters

  • Park, Tae Chang;Kim, Beom Seok;Kim, Tae Young;Jin, Il Bong;Yeo, Yeong Koo
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.813-821
    • /
    • 2018
  • The basic oxygen furnace (BOF) steelmaking process in the steel industry is highly complicated, and subject to variations in raw material composition. During the BOF steelmaking process, it is essential to maintain the carbon content and the endpoint temperature at their set points in the liquid steel. This paper presents intelligent models used to estimate the endpoint temperature in the basic oxygen furnace (BOF) steelmaking process. An artificial neural network (ANN) model and a least-squares support vector machine (LSSVM) model are proposed and their estimation performance compared. The classical partial least-squares (PLS) method was also compared with the others. Results of the estimations using the ANN, LSSVM and PLS models were compared with the operation data, and the root-mean square error (RMSE) for each model was calculated to evaluate estimation performance. The RMSE of the LSSVM model 15.91, which turned out to be the best estimation. RMSE values for the ANN and PLS models were 17.24 and 21.31, respectively, indicating their relative estimation performance. The essential input parameters used in the models can be selected by sensitivity analysis. The RMSE for each model was calculated again after a sequential input selection process was used to remove insignificant input parameters. The RMSE of the LSSVM was then 13.21, which is better than the previous RMSE with all 16 parameters. The results show that LSSVM model using 13 input parameters can be utilized to calculate the required values for oxygen volume and coolant needed to optimally adjust the steel target temperature.

Effect of Carbon Materials on the Slag Foaming in EAF Process (전기로 슬래그 포밍에 미치는 가탄재 종류의 영향)

  • Kim, Young-Hwan;Yoo, Jung-Min;Um, Hyung-Sic
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.40-45
    • /
    • 2019
  • During steelmaking in EAF, recycled scraps is used as a main material, melted by arc, and electricity use as a main energy. Slag foaming is an important technology for reducing electrical energy. CO gas generated by the reaction between injection carbon and (FeO), [C] and injection {$O_2$}. CO gas generated by this reaction is collected in slag, resulted in slag foaming. In general, the carbon materials used in the EAF process is anthracite and coke. This study investigated the effects of the carbon materials used on slag foaming in the steelmaking process. As a result of this study, the slag foaming height is increased by cokes rather than anthracite, and with an increase in the amount of particles samller than $500{\mu}m$. Based on these results, the application to the operation resulted in increase of slag forming height, reduction of injection carbon, and reduction of electrical energy.

The Phenomenon of the Slag Foaming and the Result of using Various Slag Deforming Agents in the Steelmaking Converter (제강(製鋼) 전로(轉爐) 정연시(精鍊時) 슬래그 폼(Slag Foam)발생(發生) 현상(現像) 및 진정제(鎭靜劑) 종류(種類)에 따른 사용효과(使用效果))

  • Chun, Sang-Ho;Song, Choong-Ok;Ban, Bong-Chan
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.18-23
    • /
    • 2006
  • Foaming of slag is a thermodynamically unstable phenomenon and has significant effects in iron and steelmaking processes. For better recycling method of pulp sludge, the application as an defoaming agent during steelmaking process was adopted and tested. The forming machine has been modified in order to produce the briquettes, which are made of pulp sludge and slag with different weight ratio. Influencing factors on the foaming phenomena have been studied and tested for better understanding of foaming phenomena. Experiments were carried out with $CaO-FeO-SiO_2$ based slags with Ar gas injection and addition of coke particles. The slag basicity and (%FeO) contents adapted as major factors to treasure foaming tendency of the slag system. It was found that foam index (${\Sigma}$) gradually decreased as both the basicity and the (FeO) content increase. Four kinds of antifoaming agent such as aluminium dross, cokes, rice bran and pulp sludge with steelmaking slag have been tested in actual process. Aluminium dross was the most effective, and pulp sludge with steelmaking slag also showed the desired results.