• Title/Summary/Keyword: Stochastic Kinetics

Search Result 6, Processing Time 0.027 seconds

FURTHER EVALUATION OF A STOCHASTIC MODEL APPLIED TO MONOENERGETIC SPACE-TIME NUCLEAR REACTOR KINETICS

  • Ha, Pham Nhu Viet;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.523-530
    • /
    • 2011
  • In a previous study, the stochastic space-dependent kinetics model (SSKM) based on the forward stochastic model in stochastic kinetics theory and the Ito stochastic differential equations was proposed for treating monoenergetic space-time nuclear reactor kinetics in one dimension. The SSKM was tested against analog Monte Carlo calculations, however, for exemplary cases of homogeneous slab reactors with only one delayed-neutron precursor group. In this paper, the SSKM is improved and evaluated with more realistic and complicated cases regarding several delayed-neutron precursor groups and heterogeneous slab reactors in which the extraneous source or reactivity can be introduced locally. Furthermore, the source level and the initial conditions will also be adjusted to investigate the trends in the variances of the neutron population and fission product levels across the reactor. The results indicate that the improved SSKM is in good agreement with the Monte Carlo method and show how the variances in population dynamics can be controlled.

Nonclassical Chemical Kinetics for Description of Chemical Fluctuation in a Dynamically Heterogeneous Biological System

  • Lim, Yu-Rim;Park, Seong-Jun;Lee, Sang-Youb;Sung, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.963-970
    • /
    • 2012
  • We review novel chemical kinetics proposed for quantitative description of fluctuations in reaction times and in the number of product molecules in a heterogeneous biological system, and discuss quantitative interpretation of randomness parameter data in enzymatic turnover times of ${\beta}$-galactosidase. We discuss generalization of renewal theory for description of chemical fluctuation in product level in a multistep biopolymer reaction occurring in a dynamically heterogeneous environment. New stochastic simulation results are presented for the chemical fluctuation of a dynamically heterogeneous reaction system, which clearly show the effects of the initial state distribution on the chemical fluctuation. Our stochastic simulation results are found to be in good agreement with predictions of the analytic results obtained from the generalized master equation.

A Study on the Pit Growth Kinetics of Inconel Alloy 600 in $Cl^--Ion$ Containing Solution at Temperatures $25^{\circ}\;to\;150^{\circ}C$ by Analysis of Current Transients in View of Stochastic Theory (확률 이론의 관점에서 $25^{\circ}$ 에서 $150^{\circ}C$ 사이의 염화이온 함유수용액에서 인코넬 합금 600에서 구한 전류추이 곡선의 해석에 의한 핏트의 성장 속도론에 대한 연구)

  • 박진주;변수일
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.44-44
    • /
    • 2003
  • PDF

Memory Equations for Kinetics of Diffusion-Influenced Reactions

  • Yang, Mino
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1659-1663
    • /
    • 2006
  • A many-body master equation is constructed by incorporating stochastic terms responsible for chemical reactions into the many-body Smoluchowski equation. Two forms of Langevin-type of memory equations describing the time evolution of dynamical variables under the influence of time-independent perturbation with an arbitrary intensity are derived. One form is convenient in obtaining the dynamics approaching the steady-state attained by the perturbation and the other in describing the fluctuation dynamics at the steady-state and consequently in obtaining the linear response of the system at the steady-state to time-dependent perturbation. In both cases, the kinetics of statistical averages of variables is found to be obtained by analyzing the dynamics of time-correlation functions of the variables.

Lattice based Microstructure Evolution Model for Monte Carlo Finite Element Analysis of Polycrystalline Materials (격자식 미세구조 성장 모델을 이용한 다결정 박막 소재의 유한 요소 해석)

  • 최재환;김한성;이준기;나경환
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.248-252
    • /
    • 2004
  • The mechanical properties of polycrystalline thin-films, critical for Micro-Electro-Mechanical Systems (MEMS) components, are known to have the size effect and the scatter in the length scale of microns by the numbers of intensive investigation by experiments and simulations. So, the consideration of the microstructure is essential to cover these length scale effects. The lattice based stochastic model for the microstructure evolution is used to simulate the actual microstructure, and the fast and reliable algorithm is described in this paper. The kinetics parameters, which are the key parameters for the microstructure evolution based on the nucleation and growth mechanism, are extracted from the given micrograph of a polycrystalline material by an inverse method. And the method is verified by the comparison of the quantitative measures, the number of grains and the grain size distribution, for the actual and simulated microstructures. Finite element mesh is then generated on this lattice based microstructure by the developed code. And the statistical finite element analysis is accomplished for selected microstructure.

Theory of Diffusion-Influenced Bimolecular Reactions in Solution : Effects of a Stochastic Gating Mode

  • Kim Joohyun;Lee Sangyoub
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.398-404
    • /
    • 1992
  • We have investigated the kinetics of diffusion-influenced bimolecular reactions in which one reactant has an internal mode, called the gating mode, that activates or deactivates its reactivity intermittently. The rate law and an expression for the time-dependent rate coefficient have been obtained from the general formalism based on the hierarchy of kinetic equations involving reactant distribution functions. The analytic expression obtained for the steady-state reaction rate constant coincides with the one obtained by Szabo et al., who derived the expression by employing the conventional concentration-gradient approach. For the time-dependent reaction rate coefficient, we obtained for the first time an exact analytic expression in the Laplace domain which was then inverted numerically to give the time-domain results.