• Title/Summary/Keyword: Stormwater drainage system

Search Result 22, Processing Time 0.033 seconds

Best Site Identification for Spatially Distributed On-Site Stormwater Control Devices in an Urban Drainage System (도시유역에서 공간적으로 분포된 소규모 강우유출수 관리시설의 최적설치위치선정)

  • Kim, Sangdan;Lim, Yong Kun;Kim, Jin Kwan;Kang, Dookee;Seo, Seongcheol;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.986-993
    • /
    • 2010
  • Spatially distributed on-site devices such as bioretentions and bioboxfilters are becoming more common as a means of controlling urban stormwater quality. One approach to modeling the cumulative catchment-scale effects of such devices is to resolve the catchment down to the scale of a land parcel or finer, and then to model each device separately. The focus of this study is to propose a semi-distributed model for simulating urban stormwater quantity and identifying best sites for spatially distributed on-site stormwater control devices in an urban drainage system. A detailed model for urban stormwater improvement conceptualization simulation is set up for a $0.9342km^2$.

Optimal Volume Estimation for Non-point Source Control Retention Considering Spatio-Temporal Variation of Land Surface (지표면의 시공간적 변화를 고려한 비점오염원 저감 저류지 최적용량산정)

  • Choi, Daegyu;Kim, Jin Kwan;Lee, Jae Kwan;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • In this study the optimal volume for non-point source control retention is estimated considering spatio-temporal variation of land surface. The 3-parameter mixed exponential probability density function is used to represent the statistical properties of rainfall events, and NRCS-CN method is applied as rainfall-runoff transformation. The catchment drainage area is divided into individual $30m{\times}30m$ cells, and runoff curve number is estimated at each cell. Using the derived probability density function theory, the stormwater probability density function at each cell is derived from the rainfall probability density function and NRCS-CN rainfall-runoff transformation. Considering the antecedent soil moisture condition at each cell and the spatial variation of CN value at the whole catchment drainage area, the ensemble stormwater capture curve is established to estimate the optimal volume for an non-point source control retention. The comparison between spatio-temporally varied land surface and constant land surface is presented as a case study for a urban drainage area.

Designing a Decentralized Stormwater Management Corridor for a Flood-Prone Watershed using Surface Runoff Analysis (지표유출수 분석을 통한 상습침수유역의 분산식 우수관리통로 설계)

  • Lee, Seul;Lee, Yumi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.13-26
    • /
    • 2015
  • Many urban areas in Korea suffer from repeated flood damage during intensive rainfall due to an increase in impervious areas caused by rapid urbanization and deteriorating sewage systems. A centralized stormwater management system has caused severe flood damage in an area that has proven unable to accommodate recent climate change and a rise in precipitation. Most flooding prevention projects that have been recently implemented focus on increasing drainage system capacity by expanding the size of sewer pipes and adding pumping stations in downstream areas. However, such measures fail to provide sustainable solutions since they cannot solve fundamental problems to reduce surface runoff caused by urbanization across the watershed. A decentralized stormwater management system is needed that can minimize surface runoff and maximize localized retention capacity, while maintaining the existing drainage systems. This study proposes a stormwater management corridor for the flood-prone watershed in the city of Dongducheon. The corridor would connect the upstream, midstream, and downstream zones using various methods for reducing stormwater runoff. The research analyzed surface runoff patterns generated across the watershed using the Modified Rational Method considering the natural topography, land cover, and soil characteristics of each sub-watershed, as well as the urban fabric and land use. The expected effects of the design were verified by the retainable volume of stormwater runoff as based on the design application. The results suggest that an open space network serve as an urban green infrastructure, potentially expanding the functional and scenic values of the landscape. This method is more sustainable and effective than an engineering-based one, and can be applied to sustainable planning and management in flood-prone urban areas.

Estimation of stormwater interception ratio for evaluating LID facilities performance in Korea

  • Choi, Jeonghyeon;Lee, Okjeong;Lee, Jeonghoon;Kim, Sangdan
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2019
  • To minimize the impact of urbanization, accurate performance evaluation of Low Impact Development (LID) facilities is needed. In Korea, the method designed to evaluate large-scale non-point pollution reduction facilities is being applied to LID facilities. However, it has been pointed out that this method is not suitable for evaluating the performance of relatively small-scale installed LID facilities. In this study, a new design formula was proposed based on the ratio of LID facility area and contributing drainage area, for estimating the Stormwater Interception Ratio (SIR) for LID facilities. The SIR was estimated for bio-retentions, infiltration trenches and vegetative swales, which are typical LID facilities, under various conditions through long-term stormwater simulation using the LID module of EPA SWMM. Based on the results of these numerical experiments, the new SIR formula for each LID facility was derived. The sensitivity of the proposed SIR formula to local rainfall properties and design variables is analysed. In addition, the SIR formula was compared with the existing design formula, the Rainfall Interception Ratio (RIR).

GIS-based Urban Flood Inundation Analysis Model Considering Building Effect (건물영향을 고려한 GIS기반 도시침수해석 모형)

  • Lee, Chang-Hee;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.223-236
    • /
    • 2007
  • Recently in urban area flood damages increase due to local concentrated heavy rainfall. Even in the cities where stormwater drainage systems are relatively well established flood damage still occurs because of the capacity limitations of the existing stormwater drainage systems. When the flood exceeds the capacity limitation of the urban storm sewer system, it yields huge property losses of public facilities involving roadway inundation to paralyze industrial and transportation system of the city. To prevent such flood damages in urban area, it is necessary to develop adequate inundation analysis model which can consider complicated geometry of urban area and artificial drainage system simultaneously. The Dual-Drainage model used in this study is the urban inundation analysis model which combines SWMM with DEM based 2-dimensional surface flood inundation model. In this study, the dual drainage model has been modified to consider the effect of complex buildings in urban area. Through the simulation of time variable inundation process, it is possible to identify inundation alert locations as well as to establish emergency action plan for the residencial area vulnerable to flood inundation.

Development of Urban Inundation Analysis Model Using Dual-Drainage Concept (Dual-Drainage 개념에 의한 도시침수해석모형의 개발)

  • Lee, Chang Hee;Han, Kun Yeun;Noh, Joon Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.379-387
    • /
    • 2006
  • An urban inundation model coupling an one-dimensional stormwater model, SWMM(Storm Water Management Model), and a two-dimensional inundation model was developed to simulate inundation caused by the surcharge of storm sewers in urban areas. The limitation of this model which can not simulate the interaction between drainage systems and surcharged flow was resolved by developing Dual-Drainage inundation analysis model which was based upon hydraulic flow routing procedures for surface flow and pipe flow. The Dual-Drainage inundation analysis model can simulate the effect of complex storm drainage system. The developed model was applied to Dorim, catchment. The computed inundated depth and area have good agreement with the observed data during the flood events. The developed model can help the decision support system of flood control authority for redesigning and constructing flood prevention structures and making the potential inundation zone, and establishing flood-mitigation measures.

A Study for the Computer Simulation on the Flood Prevention Function of the Extensive Green Roof in Connection with RCP 8.5 Scenarios (RCP 8.5 시나리오와 연동한 저관리형 옥상녹화시스템의 수해방재 성능에 대한 전산모의 연구)

  • Kim, Tae Han;Park, Sang Yeon;Park, Eun Hee;Jang, Seung Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • Recently, major cities in Korea are suffering from frequent urban flooding caused by heavy rainfall. Such urban flooding mainly occurs due to the limited design capacity of the current drainage network, which increases the vulnerability of the cities to cope with intense precipitation events brought about by climate change. In other words, it can be interpreted that runoff exceeding the design capacity of the drainage network and increased impervious surfaces in the urban cities can overburden the current drainage system and cause floods. The study presents the green roof as a sustainable solution for this issue, and suggests the pre-design using the LID controls model in SWMM to establish more specific flood prevention system. In order to conduct the computer simulation in connection with Korean climate, the study used the measured precipitation data from Cheonan Station of Korea Meteorological Administration (KMA) and the forecasted precipitation data from RCP 8.5 scenario. As a result, Extensive Green Roof System reduced the peak runoff by 53.5% with the past storm events and by 54.9% with the future storm events. The runoff efficiency was decreased to 4% and 7%. This results can be understood that Extensive Green Roof System works effectively in reducing the peak runoff instead of reducing the total stormwater runoff.

Estimation of Storage Capacity for CSOs Storage System in Urban Area (도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정)

  • Jo, Deok Jun;Lee, Jung Ho;Kim, Myoung Su;Kim, Joong Hoon;Park, Moo Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.490-497
    • /
    • 2007
  • A Combined sewer overflows (CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available (which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a continuous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban drainage system used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range $3{\times}DWF$ (dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a decision of storage volume for CSOs reduction and water quality protection.

Size Determination Method of Bio-Retention Cells for Mimicking Natural Flow Duration Curves (자연상태 유황곡선 보전을 위한 생태저류지 용량결정방법)

  • Lee, Okjeong;Jang, Suhyung;Kim, Hongtae;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.424-431
    • /
    • 2016
  • LID facilities like bio-retention cells is applied to manage stormwater. LID concept becomes an important part in stormwater management, and the clear understanding of hydrologic performance and hydrologic impact on the corresponding catchment has been needed. In this study, the application of flow duration curves as design strategy is investigated. Bio-retention cells like many LID facilities are installed to reproduce natural hydrologic processes. In this study, the attempt to determine the size of a bio-retention cell is carried out to satisfy the flow duration criteria. From the results, it is shown that "5 mm * the area of a target catchment" which is the current facility design capacity is valid for the drainage area with 20-30% impervious rate. In the 100% impervious catchment where LID facilities are typically installed, the design capacity to intercept stormwater of approximately 47 mm depth is required to reproduce natural flow duration curves. This means that about 11% of the target catchment area should be allocated as a bio-retention cell. However, the criteria of the design capacity and facility surface area should be set at the possible implementation conditions in reality, and site-specific hydrologic characteristics of a target catchment should be considered.

Development and Application of the Rainwater Infiltrating Equipment for the Decentralized Stormwater Managements (분산식 우수관리를 위한 침투통 개발 및 적용효과 분석)

  • 성종상;이태구;한영해;김연금;김남희
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.78-85
    • /
    • 2004
  • To manage rainwater environmentally friendly, it is necessary to let the rainwater be infiltrated naturally and make reservoirs to detain it in the chosen spot. Not only should it be prepared to handle the city flood, but also it be a necessary alternative for establishing the ecological water circular system in cities. Therefore, considering the present rainwater. management system, this study analysed the status of products which can be interchanged from existent systems to rainwater infiltrating systems. In this study, the infiltrating equipment that is applicable to the Korean drainage system was developed. The case was studied out to investigate the effects of infiltrating and the detaining ability of the developed product. The case site, block 6 of Sang-am residence, was selected and analyzed. The amount of infiltration and detention per unit of the introduced facilities, i.e., infiltrating pipes and tanks were calculated. In this research, the amount of each infiltrating tank was revealed to be 1.353 m/hr and the amount of detention as 0.299 m/hr. And the amount of each infiltrating pipe was found to be 0.541 m/hr and the amount of detention was 0.118 m/hr. To examine the effects of the system, the total amount of the outlet before and after installing was compared and calculated. In doing this, a basis for deciding the arrangement and number of tanks and pipes of the infiltrating system was made.