• Title/Summary/Keyword: Strain Gradient Plasticity Theory

Search Result 16, Processing Time 0.027 seconds

Finite Element Analysis for Micro-Forming Process Considering the Size Effect of Materials (소재 크기효과를 고려한 미세가공공정 유한요소해석)

  • Byon, S.M.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.544-549
    • /
    • 2006
  • In this work, we have employed the strain gradient plasticity theory to investigate the effect of material size on the deformation behavior in metal forming process. Flow stress is expressed in terms of strain, strain gradient (spatial derivative of strain) and intrinsic material length. The least square method coupled with strain gradient plasticity was used to calculate the components of strain gradient at each element of material. For demonstrating the size effect, the proposed approach has been applied to plane compression process and micro rolling process. Results show when the characteristic length of the material comes to the intrinsic material length, the effect of strain gradient is noteworthy. For the microcompression, the additional work hardening at higher strain gradient regions results in uniform distribution of strain. In the case of micro-rolling, the strain gradient is remarkable at the exit section where the actual reduction of the rolling finishes and subsequently strong work hardening take places at the section. This results in a considerable increase in rolling force. Rolling force with the strain gradient plasticity considered in analysis increases by 20% compared to that with conventional plasticity theory.

Deformation Analysis of Micro-Sized Material Using Strain Gradient Plasticity

  • Byon S.M.;Lee Young-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.621-633
    • /
    • 2006
  • To reflect the size effect of material $(1\sim15{\mu}m)$ during plastic deformation of polycrystalline copper, a constitutive equation which includes the strain gradient plasticity theory and intrinsic material length model is coupled with the finite element analysis and applied to plane strain deformation problem. The method of least square has been used to calculate the strain gradient at each element during deformation and the effect of distributed force on the strain gradient is investigated as well. It shows when material size is less than the intrinsic material length $(1.54{\mu}m)$, its deformation behavior is quite different compared with that computed from the conventional plasticity. The generation of strain gradient is greatly suppressed, but it appears again as the material size increases. Results also reveal that the strain gradient leads to deformation hardening. The distributed force plays a role to amplify the strain gradient distribution.

Application the mechanism-based strain gradient plasticity theory to model the hot deformation behavior of functionally graded steels

  • Salavati, Hadi;Alizadeh, Yoness;Berto, Filippo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.627-641
    • /
    • 2014
  • Functionally graded steels (FGSs) are a family of functionally graded materials (FGMs) consisting of ferrite (${\alpha}$), austenite (${\gamma}$), bainite (${\beta}$) and martensite (M) phases placed on each other in different configurations and produced via electroslag remelting (ESR). In this research, the flow stress of dual layer austenitic-martensitic functionally graded steels under hot deformation loading has been modeled considering the constitutive equations which describe the continuous effect of temperature and strain rate on the flow stress. The mechanism-based strain gradient plasticity theory is used here to determine the position of each layer considering the relationship between the hardness of the layer and the composite dislocation density profile. Then, the released energy of each layer under a specified loading condition (temperature and strain rate) is related to the dislocation density utilizing the mechanism-based strain gradient plasticity theory. The flow stress of the considered FGS is obtained by using the appropriate coefficients in the constitutive equations of each layer. Finally, the theoretical model is compared with the experimental results measured in the temperature range $1000-1200^{\circ}C$ and strain rate 0.01-1 s-1 and a sound agreement is found.

Comparison of Indentation Characteristics According to Deformation and Incremental Plasticity Theory (변형 및 증분소성이론에 따른 압입특성 비교)

  • Lee, Jin-Haeng;Lee, Hyung-Yil
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.177-184
    • /
    • 2000
  • In this work, some inaccuracies and limitation of prior indentation theory, which is based on the deformation theory of plasticity and experimental observations, are first investigated. Then effects of major material properties on the configuration of indentation load-deflection curve are examined via incremental plasticity theory based finite element analyses. It is confirmed that subindenter deformation and stress-strain distribution from the deformation theory of plasticity are quite dissimilar to those from incremental theory of plasticity. We finally suggest the optimal data acquisition location, where the strain gradient is the least and the effect of friction is negligible. This data acquisition point increases the strain range by a factor of five.

  • PDF

Some Remarks on the Spherical Indentation Theory (구형 압입이론에 관한 고찰)

  • Lee, Jin-Haeng;Lee, Hyeong-Il;Song, Won-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.714-724
    • /
    • 2001
  • In this work, some inaccuracies and limitation of prior indentation theory, which is based on the deformation theory of plasticity and experimental observations, are first investigated. Then effects of major material properties on the configuration of indentation load-deflection curve are examined via incremental plasticity theory based finite element analyses. It is confirmed that subindenter deformation and stress-strain distribution from the deformation theory of plasticity are quite dissimilar to those from incremental theory of plasticity. We finally suggest the optimal data acquisition location, where the strain gradient is the least and the effect of friction is negligible. This data acquisition point increases the strain range by a factor of five.

On elastic and plastic length scales in strain gradient plasticity

  • Liu, Jinxing;Wang, Wen;Zhao, Ziyu;Soh, Ai Kah
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.275-282
    • /
    • 2017
  • The Fleck-Hutchinson theory on strain gradient plasticity (SGP), proposed in Adv. Appl Mech 33 (1997) 295, has recently been reformulated by adopting the strategy of decomposing the second order strain presented by Lam et al. in J Mech Pays Solids 51 (2003) 1477. The newly built SGP satisfies the non negativity of plastic dissipation, which is still an outstanding issue in other SGP theories. Furthermore, it explicitly shows how elastic strain gradients and corresponding elastic characteristic length scales come into play in general elastic-plastic loading histories. In this study, the relation between elastic length scales and plastic length scales is investigated by taking wire torsion as an example. It is concluded that the size effects arising when two sets of length scales are of the same order are essentially elastic instead of plastic.

A Novel Indentation Theory Based on Incremental Plasticity Theory (증분소성이론에 준한 새 압입이론)

  • Lee, Hyung-Yil;Lee, Jin-Haeng
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.185-192
    • /
    • 2000
  • A novel indentation theory is proposed by examining the data from the incremental plasticity theory based finite element analyses. First the optimal data acquisition location is selected, where the strain gradient is the least and the effect of friction is negligible. This data acquisition point increases the strain range by a factor of five. Numerical regressions of obtained data exhibit that strain hardening exponent and yield strain are the two main parameters which govern the subindenter deformation characteristics. The new indentation theory successfully provides the stress-strain curve with an average error less than 3%.

  • PDF

Modeling and Analysis of Size-Dependent Structural Problems by Using Low-Order Finite Elements with Strain Gradient Plasticity (변형률 구배 소성 저차 유한요소에 의한 크기 의존 구조 문제의 모델링 및 해석)

  • Park, Moon-Shik;Suh, Yeong-Sung;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1041-1050
    • /
    • 2011
  • An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers.

Size-dependent plastic buckling behavior of micro-beam structures by using conventional mechanism-based strain gradient plasticity

  • Darvishvand, Amer;Zajkani, Asghar
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.223-232
    • /
    • 2019
  • Since the actuators with small- scale structures may be exposed to external reciprocal actions lead to create undesirable loads causing instability, the buckling behaviors of them are interested to make reliable or accurate actions. Therefore, the purpose of this paper is to analyze plastic buckling behavior of the micro beam structures by adopting a Conventional Mechanism-based Strain Gradient plasticity (CMSG) theory. The effect of length scale on critical force is considered for three types of boundary conditions, i.e. the simply supported, cantilever and clamped - simply supported micro beams. For each case, the stability equations of the buckling are calculated to obtain related critical forces. The constitutive equation involves work hardening phenomenon through defining an index of multiple plastic hardening exponent. In addition, the Euler-Bernoulli hypothesis is used for kinematic of deflection. Corresponding to each length scale and index of the plastic work hardening, the critical forces are determined to compare them together.

An Indentation Theory Based on FEA Solutions for Property Evaluation (유한요소해에 기초한 물성평가 압입이론)

  • Lee, Hyeong-Il;Lee, Jin-Haeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1685-1696
    • /
    • 2001
  • A novel indentation theory is proposed by examining the data from the incremental plasticity theory based finite element analyses. First the optimal data acquisition location is selected, where the strain gradient is the least and the effect of friction is negligible. This data acquisition point increases the strain range by a factor of five. Numerical regressions of obtained data exhibit that strain hardening exponent and yield strain are the two main parameters which govern the subindenter deformation characteristics. The new indentation theory successfully provides the stress-strain curve with an average error less than 5%.