• 제목/요약/키워드: Strain annealing

검색결과 174건 처리시간 0.024초

비대칭 압연과 열처리한 Cu 판의 집합조직과 소성변형비 변화 (I) (Changes of Texture and Plastic Strain Ratio of Asymmetrically Rolled and Annealed Cu Sheet (I))

  • 이철우;이동녕;김인수
    • 소성∙가공
    • /
    • 제28권6호
    • /
    • pp.354-360
    • /
    • 2019
  • The plastic strain ratio is one of the factors that affect the deep drawability of metal sheets. The plastic strain ratio of fully annealed Cu sheet is low because its texture has {001}<100>. In order to improve the deep drawability of Cu sheet, it is necessary to increase the plastic strain ratio of Cu sheet. This study investigate the increase of plastic strain ratio of a Cu sheet after the first asymmetry rolling and annealing, and the second asymmetry rolling and annealing in air and Ar gas conditions. The average plastic strain ratio (Rm) was 0.951 and |ΔR| value was 1.27 in the initial Cu sheet. After the second 30.1% asymmetric rolling and annealing of Cu sheet at 1000℃ in air condition, the average plastic strain ratio (Rm) was 1.03 times higher. However, |ΔR| was 0.12 times lower than that of the initial specimen. After the second 18.8% asymmetric rolling and annealing of Cu sheet at 630℃ in Ar gas condition, the average plastic strain ratio (Rm) was 1.68 times higher and |ΔR| was 0.82 times lower than that of the initial specimen. These results are attributed to the change of the texture of Cu sheet due to the different annealing conditions.

극저탄소강판의 자성에 미치는 변형소둔 결정립도의 영향 (Effects of Strain Annealing Grain Size on the Magnetic Properties of Extra-Low Carbon Steel)

  • 안성권;정원섭;박정웅
    • 열처리공학회지
    • /
    • 제19권4호
    • /
    • pp.208-218
    • /
    • 2006
  • The effects of the grain size on the magnetic properties in extra-low carbon steel after strain annealing were investigated. Two kinds of sample were prepared. One is the annealed sheet, which was annealed at $670^{\circ}C$ and $850^{\circ}C$ for various time periods after cold rolling. The other is the strain annealed sheet, which was temper rolled by 0.4% and subsequently strain annealed at the temperature ranging between $670^{\circ}C$ and $850^{\circ}C$ for various time periods. The grains after strain annealing became more coarse than those after primary annealing. The grains were coarsened due to the strain induced grain boundary migration (SIGM). It was found that the permeability tended to be increased and coercivity tended to be decreased with the increase of grain size. The optimum magnetic properties was achieved after strain annealing at $850^{\circ}C$ for 30 minites. Under this condition, the coercivity was measured to be 0.6 and the permeability was measured up to be 13000.

Real-Time Observation of Temperature-Dependen Strain in Poly (3-hexylthiophene) Crystals in a Mixed Donor and Acceptor Thin Film

  • 이현휘;김효정
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.163-163
    • /
    • 2012
  • We observed strain evolution of P3HT crystals in P3HT:PCBM films and the effect of Al electrode on the evolution during real time annealing process. Based on simple assumptions, both relaxed lattice parameters and thermal expansion coefficient could be quantitatively determined. P3HT:PCBM films displayed tensile strain in as-prepared samples regardless of the presence of an Al layer. In the absence of Al layer, P3HT crystals showed only strain relaxation at an annealing temperature of $180^{\circ}C$. Meanwhile In the presence of an Al layer, the strain was relaxed and changed to compressive strain at around 120C annealing temperature, which indicated a tightening of the thiophene ring packing. These behaviors support the improved performance of devices fabricated by post annealing process.

  • PDF

크롬질화박막형 스트레인 게이지의 열처리 특성 (The Annealing Characteristics of Chromiun Nitride Thin-Film Strain Gauges)

  • 서정환;박정도;김인규;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.692-695
    • /
    • 1999
  • This paper presents annealing characteristics of CrN thin-film strain gauges, which were deposited on glass by DC reactive magnetron sputtering in an argon-nitrogen atmosphere)Ar-(5-~25%)$N_2$. The physical and electrical characteristics of these films investigated with the thickness range 3500$\AA$ of CrN thin films, annealing temperature (100~30$0^{\circ}C$) and annealing time (24-72hr) . The optimized condition of CrN thin-film strain gauges were thickness range of 3500$\AA$ and annealing condition(30$0^{\circ}C$ , 48hr) in Ar-10%$N_2$ deposition atmosphere. Under optimum conditions, the CrN thin-films for strain gauge is obtained a high resistivity, $\rho$=1147.65$\Omega$cm a low temperature coefficient of 11.17. And change in resistance after annealing for the CrN thin film were quitely linear and stable.

  • PDF

Annealing Effect on Magnetic Properties and Electromagnetic Absorption Behaviors for Fe-Cr Alloy Powder-Polymer Composites

  • Lee, Sung-Jae;Kim, Yoon-Bae;Lee, Kyung-Sub;Kim, Sang-Woo
    • Journal of Magnetics
    • /
    • 제12권1호
    • /
    • pp.49-52
    • /
    • 2007
  • We investigated annealing effect of microforged powders on magnetic properties and electromagnetic absorption behaviors for ferromagnetic Fe-Cr metal alloy powder-polymer composites. The coercive properties greatly decreased with annealing temperature and the magnetic permeability had significantly increased after microforging and subsequent annealing treatment, due to a reduction in lattice strain of the microforged powders. The power loss in the far field regime also had greatly increased after microforging and subsequent annealing treatment in frequency range from 50 MHz to 6 GHz. As a result, the electromagnetic absorption of ferromagnetic Fe-Cr alloy metal powder-polymer composites was highly improved because of the relaxation of the internal strain during annealing process.

FDM 3D프린팅 어닐링 조건에 따른 내부응력 완화에 관한 연구 (Investigation of the Internal Stress Relaxation in FDM 3D Printing : Annealing Conditions)

  • 이선곤;김용래;김수현;김주형
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.130-136
    • /
    • 2018
  • In this paper, the effects of different 3D printing parameters including laminated angle and annealing temperature, were observed for their effects on tensile testing. In 3D printing, a filament is heated quickly, extruded, and then cooled rapidly. Because plastic is a poor heat conductor, it heats and cools unevenly causing the rapid heating and cooling to create internal stress within the printed part. Therefore, internal stress can be removed using annealing and to increase tensile strength and strain. During air cooling at annealing temperature $140^{\circ}C$, the strain of laminated angle $45^{\circ}$ specimens tended to increase by 46% while the tensile stress tended to increase by 7.4%. During oven cooling at annealing temperature $140^{\circ}C$, the strain of laminated angle $45^{\circ}$ specimens tended to increase by 34% while the tensile stress tended to increase by 22.2%. In this study, we found "3D printing with annealing" eliminates internal stress and increases the strength and stiffness of a printed piece. On the microstructural level, annealing reforms the crystalline structures to even out the areas of high and low stress, which created fewer weak areas. These results are very useful for making 3D printed products with a mechanical strength that is suitable for applications.

크롬질화박막형 스트레인 게이지의 특성 (The Characteristics of Chromiun Nitride Thin-Film Strain Gauges)

  • 서정환;김일명;이채봉;김순철;정귀상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1989-1991
    • /
    • 1999
  • This paper presents characteristics of CrN thin-film strain gauges, which were deposited on glass by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-$(5{\sim}25%)N_2$). The physical and electrical characteristics of these films investigated with the thickness range $3500{\AA}$ of CrN thin films, annealing temperature $(100{\sim}300^{\circ}C)$ and annealing $(24{\sim}72hr)$. The optimized condition of CrN thin-film strain gauges were thickness range of $3500{\AA}$ and annealing condition($300^{\circ}C$, 48 hr) in Ar-10 %$N_2$ deposition atmosphere. Under optimum conditions, the CrN thin-films for strain gauge is obtained a high resistivity, ${\rho}=1147.65{\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR=$-186ppm/^{\circ}C$ and a high temporal stability with a good longitudinal, 11.17. And change in resistance after annealing for the CrN thin-films were quitely linear and stable.

  • PDF

Polyester사를 이용한 충전용 솜사의 물성 (The Physical Properties of Filling Batt Using Polyester Yarn)

  • 박명수
    • 한국의류산업학회지
    • /
    • 제9권3호
    • /
    • pp.347-350
    • /
    • 2007
  • To analyse basic properties for making packing batt according to doubling condition, packing batt yarn, of $300^D$, $900^D$, $3600^D$ made from DTY yarn $150^D$/48 were produced from KTDI. The results are as follows: The birefringence of the sample yarn increased with increasing the annealing temperature and denier. The initial modulus of the sample yarn decreased with increasing the annealing temperature and denier. The higher than annealing temperature of $160^{\circ}C$, initial modulus of the sample are equilibrated. The strain recovery ratio of samples decreased with increasing the annealing temperature and denier. The lower than annealing temperature of $140^{\circ}C$, strain recovery ratio of the sample are decreased Where the $900^D$, $3600^D$ yarns are at $100^{\circ}C$ the specific bending rigidity value obtained is 0.65kgf/d but the twisted yarn (3,600) obtained 0.006 ($gfcm^2/tex^2$). However, where the heat temperature is $160^{\circ}C$, specific bending rigidity value obtained 0.003($gfcm^2/tex^2$).

분쇄된 초경합금 분말의 산화에 미치는 진공열처리 효과 (EffEct of vacuum annealing on an oxidation of milled WC-Co powder)

  • 김소나
    • 한국분말재료학회지
    • /
    • 제3권2호
    • /
    • pp.91-96
    • /
    • 1996
  • The effect of vacuum annealing on the oxidation behavior of milled WC-15%Co powder mixture has been studied. A cobalt component in the milled powder mixture was oxidized preferentially above 175$^{\circ}C$ in air. The specimens showed a steady increase in weight at 175$^{\circ}C$ but did constant weight followed by rapid increase in specimen weight at the beginning above 20$0^{\circ}C$. Oxidation of the milled powder mixture was significantly suppressed by vacuum annealing at 30$0^{\circ}C$ for 10 h. Suppression of oxidation by vacuum annealing and different oxidation behaviors of the milled powder mixture between 175$^{\circ}C$ and 20$0^{\circ}C$, were attributed to removal of strain energy stored in the cobalt powder during vacuum annealing or oxidation treatment above 20$0^{\circ}C$. The role of stored strain energy on oxidation of milled WC-15%Co powder mixture was proved by X-ray diffraction method and differential thermal analysis.

  • PDF

Cu-Fe 합금에서 소성변형과 어닐링 공정조건이 인장강도와 전기전도도에 미치는 영향 (Effect of Plastic Deformation and Annealing Process Parameters on Strength and Electrical Conductivity of Cu-Fe Alloys)

  • 우창준;박현균
    • 열처리공학회지
    • /
    • 제32권3호
    • /
    • pp.107-112
    • /
    • 2019
  • In order to investigate the effect of plastic deformation and annealing process parameters on strength and electrical conductivity of Cu-Fe alloys, Cu-10wt%Fe, Cu-15wt%Fe alloys were drawn up to ${\eta}=4$ and annealed in the temperature range of $300^{\circ}C$ to $700^{\circ}C$, followed by measurements of tensile strength and electric conductivity. As draw strain increases, tensile strength increases while electrical conductivity decreases. These observations result from reduction of dislocation density and decrease in Fe fiber spacing. Raising annealing temperature brought about decrease of tensile strength and increase of electrical conductivity up to $500^{\circ}C$, being followed by decreasing above $500^{\circ}C$. Such results are thought to be caused by decrease of dislocation density below $500^{\circ}C$ and rapid solubility increase of Fe in Cu above $500^{\circ}C$. For the purpose of obtaining both high strength and high conductivity, annealing process should be incorporated just prior to reaching to final draw strain. For Cu-10wt%Fe alloy, the tensile strength 706.9 MPa and the electrical conductivity 54.34%IACS were obtained through the processes of drawing up to ${\eta}=3$, annealing at $500^{\circ}C$ for 1 hour and additional drawing up to total strain of ${\eta}=4$.