• Title/Summary/Keyword: Streptomyces clavuligerus

Search Result 17, Processing Time 0.054 seconds

Enhanced Clavulanic Acid Production in Streptomyces clavuligerus NRRL3585 by Overexpression of Regulatory Genes

  • Hung, Trinh Viet;Ishida, Kenji;Parajuli, Niranjan;Liou, Kwang-Kyoung;Lee, Hei-Chan;Sohng, Jae-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.116-120
    • /
    • 2006
  • We constructed four recombinant plasm ids to enhance the production of clavulanic acid (CA) in Streptomyces clavuligerus NRRL3585: (1) pIBRHL1, which includes ccaR, a pathway-specific regulatory gene involved in cephamycin C and CA biosynthesis; (2) pIBRHL2, containing claR, again a regulatory gene, which controls the late steps of CA biosynthesis; (3) pGIBR containing afsR-p, a global regulatory gene from Streptomyces peucetius; and (4) pKS, which harbors all of the genes (ccaR/ claR/ afsR-p). The plasmids were expressed in S. clavuligerus NRRL3585 along with the $ermE^*$ promoter. All of them enhanced the production of CA; 2.5-fold overproduction for pIBRHL1, 1.5-fold for pIBRHL2, 1.6-fold for pGIBR, and 1.5-fold for pKS compared to the wild type.

Synthesis of 7$\alpha$-Hydroxycephalosporin C by Immobilized Enzyme (고정화 효소를 이용한 7$\alpha$-hydroxycephalosporin C의 합성)

  • 김정근;강희일;박영훈;최용진;이종욱
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.164-169
    • /
    • 2001
  • The conversion of cephalosporin C to 7$\alpha$-hydroxycephalosporin C was examined with the cell-free extract of several cephamycin producing strains. Streptomyces clavuligerus ATCC 27064 was the most potent strain for the activity of cephalosporin 7$\alpha$-hydroxylase. Partially purified and immobilized cephalosporin 7$\alpha$-hydroxylase with resins were used to synthesize 7$\alpha$-hydroxycephalosporin C from the substrate, cephalosporin C. The molecular weight of the product isolated from the reaction mixture were determined to be 431 by ESI-Mass. $^1H$ NMR also support the conversion of cephalosporin C to 7$\alpha$-hydroxycephalosporin C by immobilized enzyme.

  • PDF

In vivo Functional Analysis of γ-butyrolactone Autoregulator Receptor Gene (scaR) in Streptomyces clavuligerus (Streptomyces clavuligerus의 γ-butyrolactone autoregulator receptor 유전자에 대한 in vivo 기능 분석)

  • Kang Su-Jin;Lee Chang-Kwon;Choi Sun-Uk;Kim Hyun-Soo;Hwang Yong-Il
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.76-81
    • /
    • 2006
  • A $\gamma-butyrolactone$ autoregulator receptor has a common activity as DNA-binding transcriptional repressors controlling secondary metabolism and/or morphological differentiation in Streptomyces. A gene (scaR) encoding it was cloned from Streptomyces cravuligerus, a clavulanic acid producer, and was in vitro characterized in a previous report. In this study to clarify the in vivo function of ScaR, a $\gamma-butyrolactone$ autoregulator receptor of Streptomyces clavuligerus, we constructed a scaR-deleted strain by means of homologous recombination. No difference in morphology was found between the wild-type strain and the scaR-disruptant, but the scaR-disruptant showed higher clavulanic acid production. This indicates that the ScaR in S. clavuligerus acts as a negative regulator of the biosynthesis of clavulanic acid, but plays no role in morphological differentiation.

Enhancement of Clavulanic Acid Production by Expressing Regulatory Genes in gap Gene Deletion Mutant of Streptomyces clavuligerus NRRL3585

  • Jnawali, Hum Nath;Lee, Hei-Chan;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.146-152
    • /
    • 2010
  • Streptomyces clavuligerus NRRL3585 produces a clinically important $\beta$-lactamase inhibitor, clavulanic acid (CA). In order to increase the production of CA, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene (gap) was deleted in S. clavuligerus NRRL3585 to overcome the limited glyceraldehyde-3-phosphate pool; the replicative and integrative expressions of ccaR (specific regulator of the CA biosynthetic operon) and claR (Lys-type transcriptional activator) genes were transformed together into a deletion mutant to improve clavulanic acid production. We constructed two recombinant plasmids to enhance the production of CA in the gap1 deletion mutant of S. clavuligerus NRRL3585: pHN11 was constructed for overexpression of ccaR-claR, whereas pHN12 was constructed for their chromosomal integration. Both pHN11 and pHN12 transformants enhanced the production of CA by 2.59-fold and 5.85-fold, respectively, compared with the gap1 deletion mutant. For further enhancement of CA, we fed the pHN11 and pHN12 transformants ornithine and glycerol. Compared with the gap1 deletion mutant, ornithine increased CA production by 3.24- and 6.51-fold in the pHN11 and pHN12 transformants, respectively, glycerol increased CA by 2.96- and 6.21-fold, respectively, and ornithine and glycerol together increased CA by 3.72- and 7.02-fold, respectively.

Lipase Activity and Tacrolimus Production in Streptomyces clavuligerus CKD 1119 Mutant Strains

  • Kim, Hyung-Soo;Park, Young-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1638-1644
    • /
    • 2007
  • The effect of carbon sources on tacrolimus production by a mutant strain of Streptomyces clavuligerus CKD 1119, an isolate from soil, was examined. Among the carbohydrates and oils tested in this work, a mixed carbon source of soluble starch and com oil was the best. An analysis of the culture kinetics also showed that, in contrast to the carbohydrates, the com oil was consumed later in the antibiotic production phase, implying that the oil substrate was the principal carbon source for the biosynthesis of tacrolimus, and this was directly proven by experiments using $^{14}C$-glucose and $^{14}C$-oleate substrates. Furthermore, com oil induced the formation of lipase by the mutant strain, whereas the addition of glucose significantly repressed lipase activity. The lipase activity exhibited by the FK-506-overproducing mutants was also observed to be directly proportional to their tacrolimus yield, indicating that a high lipase activity is itself a crucial factor for tacrolimus production. A feasibility study with a 200-1 pilot-scale fermentor and the best strain (Tc-XII-15322) identified in this work revealed a high volumetric and specific productivity of about 495 mg/l and 0.34 mg/mg dry mycelium, respectively.

Stringent Factor Regulates Antibiotics Production and Morphological Differentiation of Streptomyces clavuligerus

  • RYU , YONG-GU;JIN, WOOK;KIM, JIN-YOUNG;KIM, JAE-YOUNG;LEE, SANG-HEE;LEE, KYE-JOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1170-1175
    • /
    • 2004
  • The involvement of the relA and rsh genes in the morphological and physiological differentiation of Streptomyces clavuligerus was evaluated with the relA and rsh genes mutants. The morphological differentiation of S. clavuligerus was greatly affected by the disruption of the relA gene, but not very much by the disruption of the rsh gene. The altered morphological characteristics were completely restored by the complementation of the corresponding disrupted genes. Thus, it was apparent that the mycelial morphology and clavulanic acid production were severely affected by the disruption of the relA gene. Production of clavulanic acid in the submerged batch culture and glycerol-limited chemostat showed that production was inversely related to the specific growth rate in the wild-type strain. However, the production of clavulanic acid in the ${\Delta}relA$ and ${\Delta}rsh$ null mutants was completely abolished. Therefore, it seems plausible that the stringent response of S. clavuligerus to starvation for amino acids is governed mainly by ReIA, rather than Rsh, and that the (p)ppGpp synthesized immediately after the depletion of amino acids triggers the initiation of pathways for both morphological and physiological differentiation in this species.

Effect of Inorganic Salts and Various Bioreactors on the Production of Clavulanic Acid (무기염과 생물반응기의 종류가 Clavulanic acid의 생산에 미치는 영향)

  • Kim, Il-Chul;Kim, Seung-Uk
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.440-444
    • /
    • 1999
  • For the effecient production of clavulanic acid., a mutant strain Streptomyces clavuligerus KK was selected from Streptomyces clavuligerus ATCC 27064 through mutation with NTG. S. clavuligerus ATCC 27064 produced about 200 mg/L of calvulanic acid when the medium was composed of 1%(W/V) glycerol, 1.5%(W/V) soybean flour, 0.1%(W/V) $KH_2PO_4$, 0.2%(V/V) soybean oil. A selected mutant, S. clavuligerus KK, produced about 1150 mg/L of clavulanic acid in the same medium. After the addition of $MgSO_4$ to the basal medium, S. clavuligerus KK produced about 1550 mg/L of clavulanic acid, with shows about 1.3 times higher than that produced in the basal medium. In order to select the proper bioreactor for the production of clavulanic acid, a batch culture was performed in an airlift, a bubble column and an stirred tank bioreactors. In an airlift bioreactor, about 1350 mg/L of clavulanic acid was produced, in a bubble column bioreactor, about 1550 mg/L, in a stirred tank bioreactor, about 2200 mg/L, respectively. The production of clavulanic acid in stirred tank bioreactor was about 50% higer than that by an airlift and a bubble column bioreactors. According to this result, the stirred tank bioreactor was selected as a proper bioreactor.

  • PDF

Functional Effects of Increased Copy Number of the Gene Encoding Proclavaminate Amidino Hydrolase on Clavulanic Acid Production in Streptomyces clavuligerus ATCC 27064

  • Song, Ju-Yeon;Kim, Eun-Sook;Kim, Dae-Wi;Jesen, Susan E.;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.417-426
    • /
    • 2008
  • The effect of increasing levels of proclavaminate amidino hydrolase (Pah) on the rate of clavulanic acid production in Streptomyces clavuligerus ATCC 27064 was evaluated by increasing dosoge of a gene (pah2) encoding Pah. A strain (SMF5703) harboring a multicopy plasmid containing the pah2 gene showed significantly retarded cell growth and reduced clavulanic acid production, possibly attributable to the deleterious effects of the multicopy plasmid. In contrast, a strain (SMF5704) carrying a single additional copy of pah2 introduced into chromosome via an integrative plasmid showed enhanced production of clavulanic acid and increased levels of pah2 transcripts. Analysis of transcripts of other genes involved in the clavulanic acid biosynthetic pathway revealed a pattern similar to that seen in the parent. From these results, it appears that clavulanic acid production can be enhanced by duplication of pah2 through integration of a second copy of the gene into chromosome. However, increasing the copy number of only one gene, such as pah2, does not affect the expression of other pathway genes, and so only modest improvements in clavulanic acid production can be expected. Flux controlled by Pah did increase when the copy number of pah2 was doubled, suggesting that under these growth conditions, Pah levels may be a limiting factor regulating the rate of clavulanic acid biosynthesis in S. clavuligerus.

Enhancement of Clavulanic Acid by Replicative and Integrative Expression of ccaR and cas2 in Streptomyces clavuligerus NRRL3585

  • Hung, Trinh Viet;Malla, Sailesh;Park, Byoung-Chul;Liou, Kwang-Kyoung;Lee, Hei-Chan;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1538-1545
    • /
    • 2007
  • Clavulanic acid (CA) is an inhibitor of ${\beta}$-lactamase that is produced from Streptomyces clavuligerus NRRL3585 and is used in combination with other antibiotics in clinical treatments. In order to increase the production of CA, the replicative and integrative expressions of ccaR (encoding for a specific regulator of the CA biosynthetic operon) and cas2 (encoding for the rate-limiting enzyme in the CA biosynthetic pathway) were applied. Six recombinant plasmids were designed for this study. The pIBRHL1, pIBRHL3, and pIBRHL13 were constructed for overexpression, whereas pNQ3, pNQ2, and pNQ1 were constructed for chromosomal integration with ccaR, cas2, and ccaR-cas2, respectively. All of these plasmids were transformed into S. clavuligerus NRRL3585. CA production in transformants resulted in a significantly enhanced amount greater than that of the wild type, a 2.25-fold increase with pIBRHLl, a 9.28-fold increase with pNQ3, a 5.06-fold increase with pIBRHL3, a 2.93-fold increase with pNQ2 integration, a 5.79-fold increase with pIBRHLl3, and a 23.8-fold increase with pNQ1. The integrative pNQl strain has been successfully applied to enhance production.