• Title/Summary/Keyword: Streptomyces peucetius

Search Result 39, Processing Time 0.032 seconds

Studies on the Adriamycin produced from Streptomyces peucetius var. caesius Part 1. Isolation of Mutant (Streplomyces peucetius var. caesius에 의한 Adriamycin 생산(生産)에 관한 연구(硏究) 제1보(第一報). 변이주의 분리)

  • Won-Cheol, Shin
    • Journal of Industrial Technology
    • /
    • v.2
    • /
    • pp.21-25
    • /
    • 1982
  • This study was to investigate the basic research about Adriamycin production from Streptomyces peucetius var. caesius. Streptococcus pyogenes(YUFE 2204) was sensitive against Adriamycin and its MIC value was $3.125{\mu}g/ml$. Several mutants were isolated by UV-light. Among 325 mutants, Streptomyces peucetius var. caesius YS-107 was showed highest productivity of Adriamycin.

  • PDF

Doxorubicin Productivity Improvement by the Recombinant Streptomyces peucetius with High-Copy Regulatory Genes Cultured in the Optimized Media Composition

  • PARK, HEE-SEOP;KANG, SEUNG-HOON;PARK, HYUN-JOO;KIM, EUNG-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.66-71
    • /
    • 2005
  • Doxorubicin is a clinically important anticancer polyketide compound that is typically produced by Streptomyces peucetius var. caesius. To improve doxorubicin productivity by S. peucetius, a doxorubicin pathway-specific regulatory gene, dnrI, was cloned into a high-copy-number plasmid containing a catechol promoter system. The S. peucetius containing the recombinant plasmid exhibited approximately 9.5-fold higher doxorubicin productivity compared with the wild-type S. peucetius. The doxorubicin productivity by this recombinant S. peucetius strain was further improved through the optimization of culture media composition. Based on the Fractional Factorial Design (FFD), cornstarch, $K_2HPO_4$, and $MgSO_4$ were identified to be the key factors influencing doxorubicin productivity. The Response Surface Method (RSM) results based on 20 independent culture conditions with varying amounts of key factors predicted the highest theoretical doxorubicin productivity of 11.1 mg/l with corn starch of 46.33 g/l, $K_2HPO_4$ of 4.63 g/l, and $MgSO_4$ of 9.26 g/l. The doxorubicin productivity of the recombinant S. peucetius strain with the RSM-based optimized culture condition was experimentally verified to be 11.46 mg/l, which was approximately 30.8-fold higher productivity compared with the wild-type S. peucetius without culture media optimization.

Heterologous Expression of a Model Polyketide Pathway in Doxorubicin-overproducing Streptomyces Industrial Mutants (방선균 항생제 고생산 산업균주를 기반으로 한 모델 폴리케타이드의 이종숙주 발현)

  • Kim, Hye-Jin;Lee, Han-Na;Kim, Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.10-16
    • /
    • 2012
  • The Streptomyces peucetius OIM (Overproducing Industrial Mutant) strain is a recursively-mutated and optimally-screened strain used for the industrial production of polyketide antibiotics, such as doxorubicin (DXR). Using the S. peucetius OIM mutant strain as a surrogate host, a model minimal polyketide pathway for aloesaponarin II, an actinorhodin shunt product, was cloned in a high-copy conjugative plasmid, followed by functional pathway expression and quantitative metabolite analysis. The level of aloesaponarin II production was noted as being significantly higher in the OIM strain than in the wild-type S. peucetius, as well as in the regulatory network-stimulated S. coelicolor mutant strain. Moreover, the aloesaponarin II production level was seen to be even higher in a down-regulator $wblA_{spe}$-deleted S. peucetius OIM strain, implying that the rationally-engineered S. peucetius OIM mutant strain could be used as an efficient surrogate host for the high expression of foreign polyketide pathways.

Molecular Cloning and Characterization of the doxA Cytochrome P-450 Hydroxylase Gene in Streptomyces peucetius subsp. caesius ATCC 27952

  • Hong, Young-Soo;Kim, Hang-Sub;Lee, Jeong-Hyung;Kim, Kyu-Won;Lee, Jung-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.895-898
    • /
    • 2001
  • DNA sequence analysis of doxA from Streptomyces peucetius subsp. caesius ATCC 27952 revealed a $95\%$ amino acid identity with that of Streptomyces strain C5. DoxA from S. peucetius subsp. caesius ATCC 27952 encodes a peptide with both conserved heme-binding and dioxygen-binding motifs. Expression of this gene in S. lividans 1326 resulted in bioconversion of daunorubicin to doxorubicin.

  • PDF

The Fermentation Characteristics of the Interspecific Protoplast Fusant of S. peucetius and S. platensis (Streptomyces peucetius subsp. caesius와 S. platensis사이의 원형질체 융합균주의 발효특성)

  • Im, Mi-Song;Lee, Kang-Man
    • YAKHAK HOEJI
    • /
    • v.38 no.6
    • /
    • pp.749-755
    • /
    • 1994
  • An interspecific fusant strain, Streptomyces MS1 was obtained by protoplast fusion between S. peucetius subsp. caesius and S. platensis. We studied on the fermentation characteristics of the fusant strain. The fermentation products of the fusant MS1 was identical with S. peucetius, but its production of anthracycline was more stable than S. peucetius under various fermentation conditions in regard to acidogenesis of fermentation broth. The optimal medium composition for anthracycline production by fusant MS1 as follows: sucrose 2.0%, glucose 1.0%, soytone 0.7%, $CaCO_3$ 0.2%, $KH_2PO_4$ 0.013%, casamino acids 0.01%, $K_2SO_4$ 0.025%, $MaCl_2\;6H_2O$ 1.024%, 5M $CaCl_2\;5H_2O$ 0.4%, 1N NaOH 0.7%, 20% L-proline 1.5%. In this condition, the productivity of anthracycline was $80{\sim}100\;{\mu}g/ml$.

  • PDF

NDP-sugar production and glycosylation of ${\varepsilon}$-rhodomycinone in Streptomyces venezuelae (Streptomyces Peucetius에서의 ${\varepsilon}$-rhodomycinone 추출 및 이종균주에서의 rhodomycin D 생산 연구)

  • Park, Sung-Hee;Cha, Min-Ho;Kim, Eun-Jung;Yoon, Yeo-Joon;Sohng, Jae-Kyung;Lee, Hee-Chan;Liou, Kwang-Kyoung;Kim, Byung-Gee
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.44-47
    • /
    • 2008
  • Anthracycline antibiotics doxorubicin (DXR) is clinically important cancer therapeutic agent produced by Streptomyces peucetius. DXR result by further metabolism of rhodomycin D (RHOD) and require a deoxy-sugar component for their biological activity. In this study, production of TDP-L-daunosamine and its attachment to ${\varepsilon}$-rhodomycinone (RHO) to generate RHOD has been achieved by bioconversion in Streptomyces venezuelae that bears eleven genes. S. peucetius seven genes (dnmUTJVZQS) were transformed by plasmid and S. venezuelae two genes desIII, IV and two more S. peucetius drrA, B genes were integrated into chromosomal DNA. To generate the feeding substrate RHO, 6L S. peucetius grown on agar plate was harvested, extracted with organic solvent and then purified using preparative HPLC. Recombinant S. venezuelae grown on agar plate containing RHO was harvested and its n-butanol soluble components were extracted. The glycosylated product of aromatic polyketide RHO using heterologous host S. venezuelae presents the minimal information for TDP-L-daunosamine biosynthesis and its attachment onto aglycone. Moreover, the structure of auxiliary protein, DnrQ, was predicted by fold recognition and homology modeling in this study. This is a general approach to further expand of new glycosides of antitumor anthracycline antibiotics.

Characterization of Doxorubicin-nonproducing Mutant, Nu3 of Streptomyces peucetius ATCC27952

  • Kyu, Hwang-Cheol;Lee, Hong-Sub;Hong, Young-Soo;Paek, Nam-Soo;Kim, Tae-Han;Lee, Jung-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.363-366
    • /
    • 1997
  • A doxorubicin-nonproducing mutant, Nu23 was selected from the mutagenesis of Streptomyces peucetius ATCC27952. Chemical and molecular biological analysis suggested that the mutant was blocked at the step between polyketide synthase and aklaviketon reductase in the biosynthesis of doxorubicin. Furthermore, the bioconversion experiment with the mutant revealed that 13-dihydrodaunorubicin is likely to be a biosynthetic intermediate.

  • PDF

Activation of Cryptic hop Genes from Streptomyces peucetius ATCC 27952 Involved in Hopanoid Biosynthesis

  • Ghimire, Gopal Prasad;Koirala, Niranjan;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.658-661
    • /
    • 2015
  • Genes encoding enzymes with sequence similarity to hopanoids biosynthetic enzymes of other organisms were cloned from the hopanoid (hop) gene cluster of Streptomyces peucetius ATCC 27952 and transformed into Streptomyces venezuelae YJ028. The cloned fragments contained four genes, all transcribed in one direction. These genes encode polypeptides that resemble polyprenyl diphosphate synthase (hopD), squalene-phytoene synthases (hopAB), and squalene-hopene cyclase (hopE). These enzymes are sufficient for the formation of the pentacyclic triterpenoid lipid, hopene. The formation of hopene was verified by gas chromatography/mass spectrometry.

Identification of a Cryptic Type III Polyketide Synthase (1,3,6,8-Tetrahydroxynaphthalene Synthase) from Streptomyces peucetius ATCC 27952

  • Ghimire, Gopal Prasad;Oh, Tae-Jin;Liou, Kwangkyoung;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.362-367
    • /
    • 2008
  • We identified a 1,134-bp putative type III polyketide synthase from the sequence analysis of Streptomyces peucetius ATCC 27952, named Sp-RppA, which is characterized as 1,3,6,8-tetrahydroxynaphthalene synthase and shares 33% identity with SCO1206 from S. coelicolor A3(2) and 32% identity with RppA from S. griseus. The 1,3,6,8-tetrahydroxynaphthalene synthase is known to catalyze the sequential decarboxylative condensation, intramolecular cyclization, and aromatization of an oligoketide derived from five units of malonyl-CoA to give 1,3,6,8-tetrahydroxynaphthalene, which spontaneously oxidizes to form 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin). In this study, we report the in vivo expression and in vitro synthesis of flaviolin from purified gene product (Sp-RppA).

Characterization of Dephosphocoenzyme A Kinase from Streptomyces peucetius ATCC27952, and Its Application for Doxorubicin Overproduction

  • Lee, Na-Rae;Rimal, Hemraj;Lee, Joo-Ho;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1238-1244
    • /
    • 2014
  • Dephosphocoenzyme A (CoaE) catalyzes the last step in the biosynthesis of the cofactor coenzyme A. In this study, we report the identification and application of CoaE from Stretomyces peucetius ATCC27952. After expression of coaE, the protein was found to have a molecular mass of 28.6 kDa. Purification of the His-tagged fused CoaE protein was done by immobilized metal-affinity chromatography, and then in vitro enzymatic coupling assay was performed. The increasing NADH consumption with time shed light on the phosphorylating activity of CoaE. Furthermore, the overexpression of coaA and coaE independently under the $ermE^*$ promoter in the doxorubicin -producing wild type strain, resulted in 1.4- and 1.5-fold enhancements in doxorubicin production, respectively. In addition, the overexpression of both genes together showed a 2.1-fold increase in doxorubicin production. These results established a positive role for secondary metabolite production from Streptomyces peucetius.