• Title/Summary/Keyword: Streptomyces rimosus

Search Result 9, Processing Time 0.025 seconds

Antifungal Metabolisms of Streptomyces rimosus against Sapstain and Mold Fungi(I) -Antifungal Efficacy of Secondary Metabolites- (목재변색균(木材變色菌) 및 표면오염균류(表面汚染菌類)에 대(對)한 Streptomyces rimosus의 항균대사(抗菌代謝) (I) -2차(次) 대사물질(代謝物質)의 항균효능(抗菌效能)-)

  • Kang, Kyu-Young;Lee, Dong-Heub;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.42-48
    • /
    • 1995
  • The purpose of this study is to evaluate the efficacy of metabolites produced form Streptomyces rimosus in controlling the growth of sapwood - inhabiting fungi. In order to carry out this task, the following specific fungi were tested : sapstain fungi - Ceratocystis pilifera, Ceratocystis piceae, and Aureobasidium pullulans ; mold fungi - Trichoderma hazianum, Trichoderma viride, Penicillium cirtrinum, and Aspergillus niger. Based on the tests, the following observations can be drawn. 1. The conidial germination of sapstain and mold fungi was completely inhibited leaving a clear zone around the paper disc treated with metabolites. The best inhibition was observed in A. pullulans plate and the least in T. viride. 2. Concentration of SB medium for the production of metabolites from St, rimosus affected antifungal activity of metabolites against sapwood - inhabiting fungi. Metabolites prepared from 1/3${\times}$SB medium showed the best activity and the least activity was observed in metabolites form 1/4${\times}$medium. 3. in vivo and in vitro test using wood blocks, treatment of pine sapwood blocks with metabolites also inhibited conidial germination and thus prevented discoloration. 4. Treatment with metabolites did not change the macroscopic structure of wood and did not cause the discoloration of the surface of wood by pigments produced form St. rimosus. In conclusion the results of this study indicate that antifungal metabloites of St, rimosus could be used for the biological control of sapstain and mold fungi.

  • PDF

Metabolomics-Based Chemotaxonomic Classification of Streptomyces spp. and Its Correlation with Antibacterial Activity

  • Lee, Mee Youn;Kim, Hyang Yeon;Lee, Sarah;Kim, Jeong-Gu;Suh, Joo-Won;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1265-1274
    • /
    • 2015
  • Secondary metabolite-based chemotaxonomic classification of Streptomyces (8 species, 14 strains) was performed using ultraperformance liquid chromatography-quadrupole-time-offlight-mass spectrometry with multivariate statistical analysis. Most strains were generally well separated by grouping under each species. In particular, S. rimosus was discriminated from the remaining sevens pecies (S. coelicolor, S. griseus, S. indigoferus, S. peucetius, S. rubrolavendulae, S. scabiei, and S. virginiae) in partial least squares discriminant analysis, and oxytetracycline and rimocidin were identified as S. rimosus-specific metabolites. S. rimosus also showed high antibacterial activity against Xanthomonas oryzae pv. oryzae, the pathogen responsible for rice bacterial blight. This study demonstrated that metabolite-based chemotaxonomic classification is an effective tool for distinguishing Streptomyces spp. and for determining their species-specific metabolites.

Purification and Properties of Extracellular Protease from Streptomyces rimosus (Streptomyces rimosus가 생산하는 Protease의 정제와 특성)

  • 김경미;이태경;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.407-411
    • /
    • 1989
  • Extracellular neutral pretense of Streptomyces rimosus producing oxytetracycline was purified by ammonium sulfate fractionation, DEAE Sephadex A-50 chromatography and Sephadex G-100 gel filteration, and was showed single band on the cathodic gel electrophoresis. The optimum pH and temperature of the enzyme were pH 8.0 and 6$0^{\circ}C$, respectively. The enzyme was activated about 80% in the presence of Co$^{2+}$ ion, and strongly inhibited by Hg$^{2+}$, Fe$^{2+}$ and chelatig agent, EDTA. Molecular weight of the enzyme was estimated to be 12, 000. The Km value of the enzyme of casein as a substrate was 2.7$\times$10$^{-4}$M.

  • PDF

Transformation Conditions of Bacillus subtilis by Streptomyces rimosus Plasmid DNA (Streptomyces rimosus Plasmid DNA에 의한 Bacillus subtilis의 형질전환 조건)

  • Hong, Yong-Ki;Seu, Jung-Hwn
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.1
    • /
    • pp.75-79
    • /
    • 1983
  • To exploit a suitable vector and recipient strain for molecular cloning in Bacillus subtilis, oxytetracycline-resistant plasmic DNA has been prepared from Streptomyces rimosus by phenol-buffer extraction of lysozyme-lysed cells and introduced into B. subtilis KPM 60 [St $r^{R}$-mutant of RM 125 (leu A8, arg 15, hsm $M^{-10}$ , hsr $M^{-10}$ )] by transformation. Oxitetracycline-resistant plasmid was well transferred into B. subtilis KPM 60 with average frequency of 10$^{-4}$ per $\mu\textrm{g}$ of DNA. The highest frequency of plasmid transformation was obtained after 3 hours incubation of recipient cells in the growth medium and 30 to 60 minutes incubation in the competence medium, and then 20 minutes contact of DNA and host cells. Optimum pH for competence was 7.5, and optimum temperature for transformation was 2$0^{\circ}C$.>.

  • PDF

Nucleotide Sequence of 16S rRNA Gene from Streptomyces melanosporofaciens 7489

  • LEE, DONG-SUN;SUNG-OUI SUH;SEON-KAP HWANG;TAEG-KYU KWON;TAE-HO KIM;WOO-CHANG SHIN;SOON-DUCK HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.5
    • /
    • pp.364-365
    • /
    • 1996
  • A region encoding the 16S rRNA was cloned by PCR from Streptomyces melanosporofaciens 7489 and sequenced by the chain-termination dideoxy sequencing method. A phylogenetic tree constructed by sequence alignment of 24 Streptomyces species suggests that there is little evolutionary distance between this strain and Streptomyces rimosus.

  • PDF

Microbial Transformation of Aniline to Acetaminophen

  • Lee, Sang-Sup;Jin, Hyung-Jong;Son, Mi-Won
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.30-34
    • /
    • 1992
  • In order to obtain acetaminophen, a popular analgesic-antipyretic, through microbial p-hydroxylation and N-acetylation of aniline, various fungi and bacteria were secreened. Among them, Streptomyces species were chosen for strain improvement by the use of interspecific protoplast fusion technique. Two interspecific fused strains were developed between S. rimosus (N-cetylation function) and S. aureofaciens (p-hydroxylation function) and also between S. lividans and S. globisporus. For efficient protoplast fusion and cell wall regeneration, various conditions were examined. In a typical experiment of mixed S rimosus ($pro^- \;his^-$) and S. aureofaciens ($ilv^-$) protoplasts with 40% (w/v) polythylene glycol 3350 (PEG) for 3 min gave $8.3\times10^{-7}$ of fusion frequency. Treatment of mixed S. lividans (pant-) and S. globisporus (leu-) protoplasts with 50% (w/v) PEG for 3 min at $30^\circ{C}$ gave $1.2\times10^{-6}$ of frequency. Among the fused strains, up to 40-50% increase in p-hydroxylation power was observed. To investigate the possibility of plasmid involvement in p-hydroxylation power was observed. To investigate the possibility of plasmid involvement in p-hydroxylation of acetanilide, plasmid curing was attempted. We found that cells treated with acriflavine (at the frequency of 100%) and cells regenerated from protoplsts of S. auroefaciens (2% frequency) lost their p-hydroxylation function.

  • PDF

Studies on Acetanilide p-Hydroxylase in Streptomyces spp. (Streptomyces 속 중의 Acetanilide p-Hydroxylase에 관한 연구)

  • Kim, Jung-Ae;Lee, Sang-Sup
    • YAKHAK HOEJI
    • /
    • v.32 no.5
    • /
    • pp.295-303
    • /
    • 1988
  • For microbial production of acetaminophen, a popular analgesic-antipyretic from aniline, we screened various fungi and bacteria. And we succeeded to some extents in acetaminophen production by successful protoplast fusion between S. lividans and S. globisporus and also between S. rimosus and S. aureofaciens. However, more fertile results might be brought via performing the cloning of acetanilide p-hydroxylation genes of Streptomyces in yeast. This study was initiated to determine whether the acetanilide p-hydroxylase of Streptomyces is cytochrome P-450 species or non-heme iron protein species. The p-hydroxylationactivity on acetanilide in S. aureofaciens ATCC 10762 was found to be unstable on exposing to the air. However, 100,000xg supernatant of the cell free extracts which were prepared in $N_2$ atmosphere showed the p-hydroxylation activity. Characteristic absorption peak of cytochrome P-450 after reduction with dithionite and addition of CO was not observed in the region of 450nm. Moreover, metyrapone and 2, 6-dichloroindophenol did not affect this enzyme activity, but sodium azide, sodium cyanide, cupric sulfate, cadmium chloride, ${\alpha}$, ${\alpha}'-dipyridyl$, and o-phenanthroline reduced p-hydroxylase activity considerably. S. fradiae NRRL 2702 was shown to have strong p-hydroxylation activity in intact cells. This activity disappeared in its cell free extracts. In its 100,000xg supernatant, however, characteristic absorption peak of cytochrome P-450 after reduction with dithionite and addition of CO was observed at 446nm. Thus, the results herein presented suggest that acetanilide p-hydroxylase of Streptomyces aureofaciens is not related to cytochrome P-450 and may include non-heme iron protein for its activity. However, it is not clear whether acetanilide p-hydroxylase in S. fradiae belongs to the same category of S. aureofaciens.

  • PDF

Physiological importance of trypsin-like protease during morphological differentiation of streptomycetes

  • Kim, In-Seop;Kang, Sung-Gyun;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.315-321
    • /
    • 1995
  • The relationship between morphological differentiation and production of trypsin-like protease (TLP_ in streptomycetes was studied. All the Streptomyces spp.In this study produced TLP just before the onset of aerial mycelium formation. Addition of TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP activity. Addition of 2% glucose to the Bennett agar medium repressed both the aerial mycelium formation and TLP production in S. abuvaviensis, S. coelicolor A3(2), S exfoliatus, S. microflavus, S. roseus, s. lavendulae, and S. rochei. However the addition of glucose did not affect S. limosus, S. felleus, S. griseus, S. phaechromogenes, and S. rimosus. The glucose repression on aerial mycelium formation and production of TLP was relieved by the addition of glucose anti-metabolite (methyl .alpha.-glucopyranoside). Therefore, it was concluded that TLP production is coordinately regulated with morphological differentiation and TLP activity is essential for morphological differentiation in streptomycetes. The proposed role of TLP is that TLP participates in the degradation of substrate mycelium protein for providing nutrient for aerial mycelial growth.

  • PDF