• Title/Summary/Keyword: Stress Concentration

Search Result 2,834, Processing Time 0.031 seconds

Molecular dynamics study of Al solute-dislocation interactions in Mg alloys

  • Shen, Luming
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • In this study, atomistic simulations are performed to study the effect of Al solute on the behaviour of edge dislocation in Mg alloys. After the dissociation of an Mg basal edge dislocation into two Shockley partials using molecular mechanics, the interaction between the dislocation and Al solute at different temperatures is studied using molecular dynamics. It appears from the simulations that the critical shear stress increases with the Al solute concentration. Comparing with the solute effect at T = 0 K, however, the critical shear stress at a finite temperature is lower since the kinetic energy of the atoms can help the dislocation conquer the energy barriers created by the Al atoms. The velocity of the edge dislocation decreases as the Al concentration increases when the external shear stress is relatively small regardless of temperature. The Al concentration effect on the dislocation velocity is not significant at very high shear stress level when the solute concentration is below 4.0 at%. Drag coefficient B increases with the Al concentration when the stress to temperature ratio is below 0.3 MPa/K, although the effect is more significant at low temperatures.

Development of ELISA for cortisol and it's application to clinical use (ELISA를 이용한 cortisol 측정법의 정립 및 임상적 응용)

  • Na, Ki-jeong;Lee, Chang-woo
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.3
    • /
    • pp.731-741
    • /
    • 1996
  • ELISA kit for cortisol was developed and then evaluated. Polyclonal antihydrocortisone-3-(o-carboxymethyl)oxime BSA rabbit serum was used to coat the 96-well microplates. The minimum detection limit of the kit was 250pg of cortisol per milliliter. The within-run variation and the day to day variation of the ELISA system were 2.0 and 5.9 at maximum, respectively. The kit was used to determine whether salivary cortisol concentration could replace blood cortisol concentration in dexamathasone suppression test of dogs. Changes of cortisol concentration were measured in serum or saliva after intravenous administration of 0.01mg of dexamethasone per kilogram of body weight. Blood alone, saliva alone or both were collected at 0, 30, 60, 120, 240, and 360 minutes after injection of dexamethasone. The change in blood cortisol concentration was found to be suitable in dexamathasone suppression test of dogs, but the change in salivary cortisol concentration was not. The kit was also used to determine whether salivary cortisol concentration could be a stress index as well as blood cortisol concentration in dogs. Two types of trial were performed to estimate the stress either by blood or salivary cortisol concentration. The first trial was stress experiment by intravenous injection of 0.2IU of PZI-insulin per kilogram body weight. Either blood alone or saliva alone was collected at 0, 30, 60, and 90 minutes after insulin administration. Both blood and salivary cortisol concentration were found to be suitable index in estimating stress from hypoglycemia by injection of insulin. The second trial was stress experiment by electrical irritation. The dogs were irritated with anti-bark device for 10 seconds. Blood was collected before and at 2 and 5 minutes after electrical irritation. Saliva was collected before and at 3 and 6 minutes after electrical irritation. The blood cortisol concentration, but not the salivary cortisol concentration was found to be suitable index in estimating stress from electrical irritation. Cushing syndrome in a dog was also successfully diagnosed with this kit.

  • PDF

3D-ESPI 시스템을 이용하여 결정된 응력집중계수가 피로수명에 미치는 영향에 관한 연구

  • Kim, Seong-Chan
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • v.12
    • /
    • pp.36-43
    • /
    • 2003
  • Fatigue life estimation by the theoretical stress concentration factors are, in general, considerably different from test results. And in calculating stress concentration factor, it is very difficult to consider actual geometry and material property which are the notch shapes, imperfections or defects of materials such as porosities inclusions and casting defects, etc. Therefore, the paper deals with the experimental method to find out the more exact stress concentration factors by measuring the strain distributions on each specimen by 3D-ESPI(Electronic Speckle Pattern Interferometry) System. Then the fatigue lives are compared between theoretical calculations using stress concentration factors determined by 3D-ESPI system and fatigue test results

  • PDF

Effect of Cu2+ Concentration and Additives on Properties of Electrodeposited Cu Thin Films for FCCL from Sulfate Baths (황산염용액으로부터 전기도금 된 FCCL용 Cu 필름의 특성에 미치는 Cu 이온농도 및 첨가제의 영향)

  • Shin, Dong-Yul;Park, Doek-Yong;Koo, Bon-Keup
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.191-196
    • /
    • 2009
  • Nanocrystalline Cu thin films were electrodeposited from sulfate baths and investigated systematically the influences of $Cu^{2+}$ concentration and additives on current efficiency, residual stress, surface morphology, and XRD patterns of electrodeposited Cu film. Current efficiency was nearly 100% at from 0.2M to 1.0 M $Cu^{2+}$ concentration. but it was linearly increased with $Cu^{2+}$ concentration at less than 0.2M. The residual stress was observed in range of 7.9 to 18.4 MPa and tensile stress mode. Dendritic and powdered form was obtained at below 0.1 M. As increased with $Cu^{2+}$ concentration in solution, the main peak in the XRD pattern shifted (111) and (220) from (200). In the other hand, all about 100% current efficiency observed in all additive concentration systems, and residual stress observed in range of 20.4 to 26.3 MPa tensile stress. The condition 5(Ultra make-up - 10 ml/l, Ulta A - 0.5ml/l, Ultr B - 0.5 ml/l) was good surface morphology, and fcc(111) peak in XRD patterns increased with increasing additive concentration.

The Fatigue Behavior by Variety of Crack Length of Surface Cracked Plate with Stress Concentration Part (응력집중부를 갖는 표면균열재의 균열길이 변화에 따른 피로거동)

  • 남기우;김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.83-91
    • /
    • 1995
  • Surface defects in structural members are apt to be origins of fatigue cracks growth, which may cause serious failure of whole structures. Most structure has a part where stress concentrates such as welded joints, corner parts, etc. And then, analysis on crack growth and penetration from these defects, therefore, is one of the most important subjects for the reliability of LBB design. The present paper has performed an experimental and analysis on the fatigue crack propagation by variety in crack length of surface cracked plate with stress concentration part. The crack growth behavior can be explained quantitatively by using Newman-Raju equation and the stress partitioning method proposed by ASME B&P Code Sec. XI. The stress concentration factor $K_t$ has affected on the crack growth. The crack growth after penetration depends upon the initial front side crack length.

  • PDF

Analysis of the Breaking Factor of Rotary Blade by Photo elastic Method -A Stress Concentration by Static Load- (광탄성법(光彈性法)에 의한 로터리 경운날의 파괴요인(破壞要因)에 대한 해석(解析) -정하중(靜荷重)에 의한 응력집중(應力集中)-)

  • Choi, S.I.;Kim, J.H.;Kim, C.S.;Kim, J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.3
    • /
    • pp.177-185
    • /
    • 1990
  • The break of rotary blade is occured from a stress concentration of the inside of blade by the outside impulsive load. In order to examine its inside stress and stress concentration of rotary blade, a epoxy plate which is suitable to applicate by photoelastic system is used to experiment. These results are summarized as follow. 1. Refer to the existence of bolt hole and a size of its of rotary blade, a stress concentration which cause the break of rotary blade is not exposed. 2. It is expected to be break to section of hold of rotary blade and the break of this is due to that there are concentrated by shearing force, bending moment and bending stress. 3. When the crack which caused from processing are set up to any location, the stress concentration taken to the creak point. 4. Without regard to the location of the reaction points of rotary blade, the bending stress which is greated than the bending moment is occured within about 6 em toward the center line of bolt hole and it was possible to break that section.

  • PDF

Fracture Behavior and Stress Distribution around Slot (슬롯주위 의 應力分布 와 破壞擧動 1)

  • 송삼홍;고성위
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.127-132
    • /
    • 1984
  • In this paper, stress concentration factor and distribution of slotted or notched plate which is subjected to uniaxial tensile load are studied. The experimental measurements have shown the following; (1)The stress around slot or notch of slotted or notched plate which is subjected to uniaxial tensile load is state of biaxial stress, which is mainly varied to notch radius and depth. (2)The stress concentration factor around slot or notch is mainly influenced by the .sigma.$_{yy}$ , it is varied with notch radius and depth. (3)For the notched specimen, there is a notch depth where stress concentration factor is maximum. On the other hand, for the slotted specimen, stress concentration factor increases as the notch depth increases. An investigation of the relationship between fracture and stress concentration factor due to the slot or notch will be presented on the later paper, for reference.

Redistribution of Vacancy Concentration in Metal Specimens under Stress-induced Diffusion at a High Temperature (고온 환경하 응력 확산에 의한 금속시편내 격자결함 재분포)

  • Yoon, Seon-Jhin;Cho, Yong-Moo
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • In this study, we calculated the redistribution of vacancy concentration in metal specimens induced by stress-induced diffusion at a high temperature. To deduce the governing equation, we associated the unit volume change equation of strains with a differential equation of vacancy concentration as a function of stress using the stress-strain relationship. In this governing equation, we considered stress as the only chemical potential parameter to stay in the scope of this study, which provided the vacancy concentration equation as of stress gradient in metals. The equation was then mathematically delineated to derive a analytical solution for a transient, one-dimensional diffusion case. With the help of Korhonen's approximation and the boundary conditions, we successfully deduced a general solution from the governing equation. To visualize the feasibility of our solutions, we applied the solution to two different stress-induced cases - a rod with fixed concentrated stresses at both ends and a rod with varying concentrated stresses at both ends. Although it is necessary to legitimatized the model in the future for improvement, our results showed that the model can be used to interpret the location of structural defects, the formation of vacancy, and furthermore the high temperature behavior of metals.

Stress concentration and deflection of simply supported box girder including shear lag effect

  • Yamaguchi, Eiki;Chaisomphob, Taweep;Sa-nguanmanasak, Jaturong;Lertsima, Chartree
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.207-220
    • /
    • 2008
  • The shear lag has been studied for many years. Nevertheless, existing research gives a variety of stress concentration factors. Unlike the elementary beam theory, the application of load is not unique in reality. For example, concentrated load can be applied as point load or distributed load along the height of the web. This non-uniqueness may be a reason for the discrepancy of the stress concentration factors in the existing studies. The finite element method has been often employed for studying the effect of the shear lag. However, not many researches have taken into account the influence of the finite element mesh on the shear lag phenomenon, although stress concentration can be quite sensitive to the mesh employed in the finite element analysis. This may be another source for the discrepancy of the stress concentration factors. It also needs to be noted that much less studies seem to have been conducted for the shear lag effect on deflection while some design codes have formulas. The present study investigates the shear lag effect in a simply supported box girder by the three-dimensional finite element method using shell elements. The whole girder is modeled by shell elements, and extensive parametric study with respect to the geometry of a box girder is carried out. Not only stress concentration but also deflection is computed. The effect of the way load is applied and the dependency of finite element mesh on the shear lag are carefully treated. Based on the numerical results thus obtained, empirical formulas are proposed to compute stress concentration and deflection that includes the shear lag effect.

Finite Element Based Stress Concentration Factors for Pipes with Local Wall Thinning (유한요소해석을 이용한 국부 감육배관에 대한 응력집중계수 제시)

  • Son, Beom-Goo;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1014-1020
    • /
    • 2004
  • The present work complies the elastic stress concentration factor for a pipe with local wall thinning, based on detailed three-dimensional elastic FE analysis. To cover practically interesting cases, a wide range of pipe and defect geometries are considered, and both internal pressure and global bending are considered. Resulting values of stress concentration factors are tabulated for practical use, and the effect of relevant parameters such as pipe and defect geometries on stress concentration factors are discussed. The present results would provide valuable information to estimate fatigue damage of the pipe with local wall thinning under high cycle fatigue.