• Title/Summary/Keyword: Structural compliance

Search Result 227, Processing Time 0.031 seconds

Position/Force Control of Constrained Flexible Manipulators Using Structural Compliance Modeling (구조적 컴플라이언스 모델링을 이용한 구속받는 유연 매니퓰레이터의 위치/힘 제어)

  • Kim, Jin-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.114-119
    • /
    • 2002
  • The aim of this paper is to clarify the structural compliance of the constrained flexible manipulator and to develop the force control algorithm by using the compliance of the links. The proposed structural compliance control consists of the position control to utilize a flexible manipulator model (considering the compensation for the elastic deflection of links) and the passive force control to utilize the rigid manipulator model (without considering the compensation for the elastic deflection of links). We present the experimental results for the case when applying the only position control, and when applying the structural compliance control. Finally, a comparison between these results is presented to show the performance of our method.

Structural Design Optimization of a High-Precision Grinding Machine for Minimum Compliance and Lightweight Using Genetic Algorithm (가변 벌점함수 유전알고리즘을 이용한 고정밀 양면 연삭기 구조물의 경량 고강성화 최적설계)

  • Hong Jin-Hyun;Park Jong-Kweon;Choi Young-Hyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.146-153
    • /
    • 2005
  • In this paper, a multi-step optimization using genetic algorithm with variable penalty function is introduced to the structural design optimization of a grinding machine. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints such as dimensional constraints, maximum deflection limit, safety criterion, and maximum vibration amplitude limit. The first step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted from the good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a grinding machine. After optimization, both static and dynamic compliances are reduced more than 58.4% compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

A Structural Analysis for Psychosocial Variables related to Sick Role Behavioral Compliance in Hemodialysis Patients (혈액투석 환자의 역할행위 이행과 관련된 사회·심리적 변인들 간의 구조분석)

  • Cho, Young-Mun
    • Korean Journal of Adult Nursing
    • /
    • v.28 no.4
    • /
    • pp.415-423
    • /
    • 2016
  • Purpose: This study was designed to identify the structural relationships among psychosocial variables related to sick role behavioral compliance among patients undergoing hemodialysis. Methods: The subjects were 476 patients from seven major hospitals and twelve dialysis centers located in D and P cities. Data were collected using self-report questionnaires. Data analysis was done by using SPSS/WIN 18.0 and AMOS 18.0 programs for structural equation modeling, to estimate the hypothesized model. Results: This findings support that a modified path model is efficient and appropriate to explain sick role behavioral compliance among hemodialysis patients. These factors account for 80.1% of the variance of sick-role behavioral compliance among hemodialysis patients. The variables having direct effect on sick role behavioral compliance were knowledge related to hemodialysis, social support, attitude, self-efficacy and intention. Conclusion: The modified model explains the integration process of psychosocial and behavior variables for sick-role behavioral compliance among patients undergoing hemodialysis.

Structural Design Optimization of a Wafer Grinding Machine for Lightweight and Minimum Compliance Using Genetic Algorithm (유전자 알고리듬 기반 다단계 최적설계 방법을 이용한 웨이퍼 단면 연삭기 구조물의 경량 고강성화 최적설계)

  • Park H.M.;Choi Y.H.;Choi S.J.;Ha S.B.;Kwak C.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.81-85
    • /
    • 2005
  • In this paper, the structural design optimization of a wafer grinding machine using a multi-step optimization with genetic algorithm is presented. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints. The first design step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted among those good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a high precision wafer grinding machine. After optimization, both static and dynamic compliances are reduced more than $92\%\;and\;93\%$ compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

  • PDF

Structural Topology Design Using Compliance Pattern Based Genetic Algorithm (컴플라이언스 패턴 기반 유전자 알고리즘을 이용한 구조물 위상설계)

  • Park, Young-Oh;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.786-792
    • /
    • 2009
  • Topology optimization is to find the optimal material distribution of the specified design domain minimizing the objective function while satisfying the design constraints. Since the genetic algorithm (GA) has its advantage of locating global optimum with high probability, it has been applied to the topology optimization. To guarantee the structural connectivity, the concept of compliance pattern is proposed and to improve the convergence rate, small number of population size and variable probability in genetic operators are incorporated into GA. The rank sum weight method is applied to formulate the fitness function consisting of compliance, volume, connectivity and checkerboard pattern. To substantiate the proposed method design examples in the previous works are compared with respect to the number of function evaluation and objective function value. The comparative study shows that the compliance pattern based GA results in the reduction of computational cost to obtain the reasonable structural topology.

Structural Design Optimization of a Micro Milling Machine for Minimum Weight and Vibrations (마이크로 밀링 머신의 저진동.경량화를 위한 구조 최적설계)

  • Jang, Sung-Hyun;Kwon, Bong-Chul;Choi, Young-Hyu;Park, Jong-Kweon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.103-109
    • /
    • 2009
  • This paper presents structural design optimization of a micro milling machine for minimum weight and compliance using a genetic algorithm with dynamic penalty function. The optimization procedure consists of two design stages, which are the static and dynamic design optimization stages. The design problem, in this study, is to find out thickness of structural members which minimize the weight, the static compliance and the dynamic compliance of the micro milling machine under several constraints such as dimensional constraints, maximum compliance limit, and safety factor criterion. Optimization results showed a great reduction in the static and dynamic compliances at the spindle nose of the micro milling machine in spite of a little decrease in the machine weight.

Structural Analysis and Dynamic Design Optimization of a High Speed Multi-head Router Machine (다두 Router Machine 구조물의 경량 고강성화 최적설계)

  • 최영휴;장성현;하종식;조용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.902-907
    • /
    • 2004
  • In this paper, a multi-step optimization using a G.A. (Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a 5-head route machine. Our design procedure consist of two design optimization stage. The first stage of the design optimization is static design optimization. The following stage is dynamic design optimization stage. In the static optimization stage, the static compliance and weight of the structure are minimized simultaneously under some dimensional constraints and deflection limits. On the other hand, the dynamic compliance and the weight of the machine structure are minimized simultaneously in the dynamic design optimization stage. As the results, dynamic compliance of the 5-head router machine was decreased by about 37% and the weight of the structure was decreased by 4.48% respectively compared with the simplified structure model.

  • PDF

Structural Design Optimization of a High Speed Machining Center by Using a Simple Genetic Algorithm (유전 알고리즘을 이용한 고속 금형센터의 구조설계 최적화)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1006-1009
    • /
    • 2000
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduced in order to minimize the static compliance, the dynamic compliance, and the weight of a high speed machining center simultaneously. Dimensional thicknesses of the eight structural members on the static force loop are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body only was reduced to 57.75% and the weight of the whole machining center was reduced to 46.2% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even though they were slightly increased than before.

  • PDF

Structural Design Optimization of a High Speed Machining Center Using a Simple Genetic Algorithm (금형가공센터 고속 이송체의 최적설계)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.74-78
    • /
    • 2001
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduce to the structural design optimization of a high speed machining center. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure and meet some design constraints simultaneously. Dimensional thicknesses of the thirteen structural members along the static force loop of the machine structure are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body was reduced to 9.1% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even thought they were slightly increased than before.

  • PDF

Multi-step Optimization of the Moving Body for the High Speed Machinining Center using Weighted Method and G.A. (가중치방법과 유전알고리즘을 이용한 금형가공센터 고속이송체의 다단계 최적설계)

  • 최영휴;배병태;강영진;이재윤;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.23-27
    • /
    • 1997
  • This paper introduces the structural design optimization of a high speed machining center using multi-step optimization combined with G.A.(Genetic Algorithm) and Weighted Method. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. Dimensional thicknesses of the thirteen structural members of the machine structure are adopted as design variables. The first step is the cross-section configuration optimization, in which the area moment of inertia of the cross-section for each structural member is maximized while its area is kept constant The second step is a static design optimization, In which the static compliance and the weight of the machine structure are minimized under some dimensional and safety constraints. The third step IS a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints. After optunization, static and dynamic compliances were reduced to 62.3% and 95.7% Eorn the initial design, while the weight of the moving bodies are also in the feaslble range.

  • PDF