• 제목/요약/키워드: Structural physical parameter estimation

검색결과 14건 처리시간 0.027초

An optimal regularization for structural parameter estimation from modal response

  • Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • 제22권4호
    • /
    • pp.401-418
    • /
    • 2006
  • Solutions to the problems of structural parameter estimation from modal response using leastsquares minimization of force or displacement residuals are generally sensitive to noise in the response measurements. The sensitivity of the parameter estimates is governed by the physical characteristics of the structure and certain features of the noisy measurements. It has been shown that the regularization method can be used to reduce effects of the measurement noise on the estimation error through adding a regularization function to the parameter estimation objective function. In this paper, we adopt the regularization function as the Euclidean norm of the difference between the values of the currently estimated parameters and the a priori parameter estimates. The effect of the regularization function on the outcome of parameter estimation is determined by a regularization factor. Based on a singular value decomposition of the sensitivity matrix of the structural response, it is shown that the optimal regularization factor is obtained by using the maximum singular value of the sensitivity matrix. This selection exhibits the condition where the effect of the a priori estimates on the solutions to the parameter estimation problem is minimal. The performance of the proposed algorithm is investigated in comparison with certain algorithms selected from the literature by using a numerical example.

Diagnostic Study of Problems under Asymptotically Generalized Least Squares Estimation of Physical Health Model

  • Kim, Jung-Hee
    • 대한간호학회지
    • /
    • 제29권5호
    • /
    • pp.1030-1041
    • /
    • 1999
  • This study examined those problems noticed under the Asymptotically Generalized Least Squares estimator in evaluating a structural model of physical health. The problems were highly correlated parameter estimates and high standard errors of some parameter estimates. Separate analyses of the endogenous part of the model and of the metric of a latent factor revealed a highly skewed and kurtotic measurement indicator as the focal point of the manifested problems. Since the sample sizes are far below that needed to produce adequate AGLS estimates in the given modeling conditions, the adequacy of the Maximum Likelihood estimator is further examined with the robust statistics and the bootstrap method. These methods demonstrated that the ML methods were unbiased and statistical decisions based upon the ML standard errors remained almost the same. Suggestions are made for future studies adopting structural equation modeling technique in terms of selecting of a reference indicator and adopting those statistics corrected for nonormality.

  • PDF

구조안전도 평가를 위한 동적변위 기반 손상도 추정 기법 개발 (Damage estimation for structural safety evaluation using dynamic displace measurement)

  • 신윤수;김준희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.87-94
    • /
    • 2019
  • 최근 구조물 계측분야에서 구조물의 동적 변위응답 측정에 관한 연구가 주목을 받고 있다. 본 연구는 이와 같은 동적 변위데이터의 활용도를 넓히고자 구조안전도 평가를 위한 방법론 제시를 목표로, 동적 변위데이터를 활용하여 부공간 시스템 식별법이 적용된 구조물 물리량 추정기법을 개발하였다. 진동 변위 데이터로부터의 상태공간모델을 추정하기 위한 부공간 시스템 식별 이론과 시스템의 물리량을 도출하기 위한 물리해석 기법을 제시하였고 실험적 검증을 위해 동적 실험을 수행하였다. 3자유도 철골 구조물을 제작하여 진동대를 활용해 지반 가진하여 각 층의 변위 데이터와 진동대의 가속도 데이터를 계측하였다. 계측된 데이터를 활용해 이산화 된 상태공간모델을 생성하였고 정밀도 파악을 위해 상태공간방정식을 통한 전산 해석을 수행하였으며, 철제 구조물의 상태공간모델로부터 층강성을 추출하였다. 또한 상태공간모델로부터 추출된 층강성을 기준으로 5가지의 기둥강성 보강 및 손상 시나리오를 설정하여 매 시나리오별 층강성 변화율을 추출하였으며 동일한 조건의 보강 및 손상의 경우, 강성 변화가 높은 일치율을 보이는 것을 확인하였다.

New generalized inverse Weibull distribution for lifetime modeling

  • Khan, Muhammad Shuaib;King, Robert
    • Communications for Statistical Applications and Methods
    • /
    • 제23권2호
    • /
    • pp.147-161
    • /
    • 2016
  • This paper introduces the four parameter new generalized inverse Weibull distribution and investigates the potential usefulness of this model with application to reliability data from engineering studies. The new extended model has upside-down hazard rate function and provides an alternative to existing lifetime distributions. Various structural properties of the new distribution are derived that include explicit expressions for the moments, moment generating function, quantile function and the moments of order statistics. The estimation of model parameters are performed by the method of maximum likelihood and evaluate the performance of maximum likelihood estimation using simulation.

S. I. 기법을 이용한 유한요소모델의 신뢰도 제고에 관한 연구 (A Study on Improving the Accuracy of Finite Element Modeling Using System Identification Technique)

  • 양경택
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.149-160
    • /
    • 1997
  • 본 연구에서는 경계부 및 연결부를 지닌 기계 구조물의 유한요소모델 수립시 상대적으로 불확실성이 많은 경계부 및 연결부를 정확히 모델링하여 전체 구조계에 대한 해석적 모델의 신뢰도를 제고하는데 그 목적을 두고, 현장에서 간단히 측정할 수 있는 측정 데이터와 축약된 형태의 유한요소모델을 이용하는 S.I.기법을 제시하였다. 제시된 방법은 연결부를 제외한 연속체를 유한요소법으로 모델링하고 연결부의 동적 계수를 변수 상태로 하여 시간 영역에서의 비선형 상태 방정식을 구성하였으며 계수 규명 문제를 비선형 상태 방정식의 상태 추정 문제로 변환하여 해결하였다. 두 가지 예제에 대한 수치 해석을 통하여 제시된 기법의 타당성을 검증하였다.

  • PDF

스트레인 출력 되먹임을 이용한 구조 시스템 계수 추정 (Structural System Parameter Estimation using Strain Output Feedback)

  • 하재훈;박윤식;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.124-127
    • /
    • 2005
  • As computer capability and test skill become more and more advanced, finite element method and modal test are being widely applied in engineering design. In order to correlate and reconcile the inevitable discrepancies between the analytical and experimental models, many techniques have been developed. Among these methods, multiple-system methods are known as the effective tools in that they can supply the rich modal data available which are experimentally obtained. These abundant modal data can help structural system parameters estimated well. Multiple-system methods can be classified into the structural modification methods and feedback controller methods. The structural modification methods need the physical attachment of structures and their concept may limit the application of them. To overcome this drawback, the feedback controller methods are addressed which enable us to get more modal data without the structural change. Mode decoupling controller(MDC), one of them, is to use acceleration out)ut feedback to perturb an open-loop system. The output feedback controller generally cannot guarantee the stability of a closed-loop system. However, MDC can solve this problem under the certain constraints. So far, MDC utilizes accelerations as the sensor signals. In this research, strain sensors are going to be picked up to apply to the MDC. Strain output is recently used for structural system identification due to the drastically improved and miniaturized strain sensor. In this paper, we show that the MDC using strain output has differences compared with acceleration output in estimating the structural system parameters. The associated simulation is performed to demonstrate the above mentioned characteristics.

  • PDF

A two-stage Kalman filter for the identification of structural parameters with unknown loads

  • He, Jia;Zhang, Xiaoxiong;Feng, Zhouquan;Chen, Zhengqing;Cao, Zhang
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.693-701
    • /
    • 2020
  • The conventional Kalman Filter (KF) provides a promising way for structural state estimation. However, the physical parameters of structural systems or models should be available for the estimation. Moreover, it is not applicable when the loadings applied to the structures are unknown. To circumvent the aforementioned limitations, a two-stage KF with unknown input approach is proposed for the simultaneous identification of structural parameters and unknown loadings. In stage 1, a modified observation equation is employed. The structural state vector is estimated by KF on the basis of structural parameters identified at the previous time-step. Then, the unknown input is identified by Least Squares Estimation (LSE). In stage 2, based on the concept of sensitivity matrix, the structural parameters are updated at the current time-step by using the estimated structural states obtained from stage 1. The effectiveness of the proposed approach is numerically validated via a five-story shearing model under random and earthquake excitations. Shaking table tests on a five-story structure are also employed to demonstrate the performance of the proposed approach. It is demonstrated from numerical and experimental results that the proposed approach can be used for the identification of parameters of structure and the external force applied to it with acceptable accuracy.

구조물의 손상크기에 따른 시간영역에서의 손상검출 (Damage Detection in Time Domain on Structural Damage Size)

  • 권대규;유계형;이성철
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.119-127
    • /
    • 2006
  • A non-destructive time domain approach to examine structural damage using parameterized partial differential equations and Galerkin approximation techniques is presented. The time domain analysis for damage detection is independent of modal parameters and analytical models unlike frequency domain methods which generally rely on analytical models. The time history of the vibration response of the structure was used to identify the presence of damage. Damage in a structure causes changes in the physical coefficients of mass density, elastic modulus and damping coefficients. This is a part of our ongoing effort on the general problem of modeling and parameter estimation for internal damping mechanisms in a composite beam. Namely, in detecting damage through time-domain or frequency-domain data from smart sensors, the common damages are changed in modal properties such as natural frequencies, mode shapes, and mode shape curvature. This paper examines the use of beam-like structures with piezoceramic sensors and actuators to perform identification of those physical parameters, and detect the damage. Experimental results are presented from tests on cantilevered composite beams damaged at different locations and different dimensions. It is demonstrated that the method can sense the presence of damage and obtain the position of a damage.

A simplified directly determination of soil-water retention curve from pore size distribution

  • Niu, Geng;Shao, Longtan;Sun, De'an;Guo, Xiaoxia
    • Geomechanics and Engineering
    • /
    • 제20권5호
    • /
    • pp.411-420
    • /
    • 2020
  • Numbers fitting-curve equations have been proposed to predict soil-water retention curve (SWRC) whose parameters have no definitude physical meaning. And these methods with precondition of measuring SWRC data is time-consuming. A simplified directly method to estimate SWRC without parameters obtained by fitting-curve is proposed. Firstly, the total SWRC can be discretized into linear segments respectively. Every segment can be represented by linear formulation and every turning point can be determined by the pore-size distribution (PSD) of Mercury Intrusion Porosimetry (MIP) tests. The pore diameters governing the air-entry condition (AEC) and residual condition (RC) can be determined by the PSDs of MIP test. The PSD changes significantly during drying in SWR test, so the determination of AEC and RC should use the PSD under corresponding suction conditions. Every parameter in proposed equations can be determined directly by PSD without curve-fitting procedure and has definitude physical meaning. The proposed equations give a good estimation of both unimodal and bimodal SWRCs.

Development of a Physics-Based Design Framework for Aircraft Design using Parametric Modeling

  • Hong, Danbi;Park, Kook Jin;Kim, Seung Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.370-379
    • /
    • 2015
  • Handling constantly evolving configurations of aircraft can be inefficient and frustrating to design engineers, especially true in the early design phase when many design parameters are changeable throughout trade-off studies. In this paper, a physics-based design framework using parametric modeling is introduced, which is designated as DIAMOND/AIRCRAFT and developed for structural design of transport aircraft in the conceptual and preliminary design phase. DIAMOND/AIRCRAFT can relieve the burden of labor-intensive and time-consuming configuration changes with powerful parametric modeling techniques that can manipulate ever-changing geometric parameters for external layout of design alternatives. Furthermore, the design framework is capable of generating FE model in an automated fashion based on the internal structural layout, basically a set of design parameters describing the structural members in terms of their physical properties such as location, spacing and quantities. The design framework performs structural sizing using the FE model including both primary and secondary structural levels. This physics-based approach improves the accuracy of weight estimation significantly as compared with empirical methods. In this study, combining a physics-based model with parameter modeling techniques delivers a high-fidelity design framework, remarkably expediting otherwise slow and tedious design process of the early design phase.