• Title/Summary/Keyword: Structural system

Search Result 10,930, Processing Time 0.033 seconds

An application of a Knowledge-Based System for Structural Planning (구조계획에서의 지식기반시스템 도입연구)

  • 김상철;김홍국;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.137-144
    • /
    • 1994
  • This study describes an application of a knowledge-based system for a part of the development of an integrated structural design system. In preliminary structural design procedure, most structural design operation are performed by structural engineer's manual method. These lack of systematic operation hampers the effective system integration. By introducing expert system to the structural planning stage, structural engineer can automate structural Planning process of an integrated structural design system for complex design. Engineering data management is receiving increasing attention due to complexity of information necessary for performing structural engineering operations. So, in this paper, we describe a methodology for automating conceptual structural design and developing a knowledge-based system integrated with database. At the end, we use an implemented example to support our methodology.

  • PDF

A Study on the New Method for Structural Analysis and Design by MDO(Multidisciplinary Design Optimization) Methodology : Application to Structural Design of Flap Drive System (MDO기법에 의한 새로운 구조해석 및 설계기법 고찰: 플랩 구동장치의 구조설계에의 적용)

  • 권영주;방혜철
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.184-195
    • /
    • 2000
  • MDO (Multidisciplinary Design Optimization) methodology is an emerging new technology to solve a complicate structural analysis and design problem with a large number of design variables and constraints. In this paper MDO methodology is adopted through the use of computer aided systems such as Geometric Solid Modeller, Mesh Generator, CAD system and CAE system. And this paper introduces MDO methodology as a new method for structural analysis and design through the application to the structural design of flap drive system. In a MDO methodology application to the structural design of flap drive system, kinetodynamic analysis is done using a simple aerodynamic analysis model for the air flow over the flap surface instead of difficult aerodynamic analysis. Simultaneously the structural static analysis is done to obtain the optimum structural condition. And the structural buckling analysis for push pull rod is also done to confirm the optimum structural condition (optimum cross section shape of push pull rod).

  • PDF

Development of Integrated Design System for Structural Design of Machine Tools (공작기계 구조물 설계를 위한 통합설계 시스템 개발)

  • 박면웅;손영태;조성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.229-239
    • /
    • 2003
  • The design process of machine tools is regarded as a sequential, discrete, and inefficient works as it requires various kinds of design tools and many working hours. This paper describes an integrated design system embedding a design methodology that can support efficiently and systematically the conceptual structural design of machine tools. The system is a knowledge-based design system and has four machine-tool-specific functional modules including configuration design, configuration analysis, structure design, and structural analysis support module. Through the configuration design and analysis module, a machine configuration appropriate for design requirements is selected, and then the arrangement of ribs fer each structural part is decided in the structure design module. Also, the structural analysis support module is used to evaluate design result by utilizing structural analysis software, ANSYS. The system is applied to design of a tapping machine, and shows that the machine structure can be designed fast and conveniently by processing each design step interactively.

Using System Reliability to Evaluate and Maintain Structural Systems

  • Estes, Allen C.;Frangopol, Dan M.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.71-80
    • /
    • 2001
  • A reliability approach to evaluate structural performance has gained increased acceptability and usage over the past two decades. Most reliability analyses are based on the reliability of an individual component without examining the entire structural system. These analyses often result in either unnecessary repairs or unsafe structures. This study uses examples of series, parallel, and series-parallel models of structural systems to illustrate how the component reliabilities affect the reliability of the entire system. The component-system reliability interaction can be used to develop optimum lifetime inspection and repair strategies for structural systems. These examples demonstrate that such strategies must be based on the reliability of the entire structural system. They also demonstrate that the location of an individual component in the system has a profound effect on the acceptable reliability of that component. Furthermore, when a structure is deteriorating over time, the reliability importance of various components is a1so changing with time. For this reason, the most critical component in the early life of the structure may not tie the most critical later.

  • PDF

Development of Database for Integrated Structural System of RC Buildings based on STEP (STEP기반의 RC 구조물 통합시스템 데이터베이스 개발)

  • 권용진;천진호;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.413-420
    • /
    • 2000
  • This paper is study for database development for integrated structural system of RC buildings based on STEP In order to develope database, CIS/2 product model and INDECON application were used. CIS/2 will be accepted STEP(The STandard for the Exchange of Product model data) AP230 and INDECON(INtelligent structural DEsign system) is a Integrated structural system of RC buildings. The paper focuses on application from CIS/2 to INDECON database.

  • PDF

Development of an Object-Oriented Initial Hull Structural Design System (객체 지향 초기 선체 구조 설계 시스템 개발)

  • Roh M.-I.;Lee K.-Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.4
    • /
    • pp.244-253
    • /
    • 2005
  • In the initial ship design stage of shipyards, the hull form design, the basic design (compartment modeling and ship calculation), and the hull structural design are being performed by different systems. Thus, the problem on interfaces between these systems occurs. To solve this, we developed the hull form design system 'EzHULL' and the compartment modeling and ship calculation system 'EzCOM-PART' for developing finally an integrated ship design system. And, in this study, we present an object-oriented hull structural design .system 'EzSTRUCT', which is developed recently. A structural design in an initial design stage can be frequently changed, because the design is not firmly determined yet. Therefore, designers perform the simplified structural modeling with bigger structural parts (or objects) such as deck, longitudinal bulkhead, etc. in the initial design stage, and the detailed structural modeling with smaller structural parts such as plate, seam, slot, etc. in the detailed design stage. However, the existing hull structural CAD system used in a shipyard is not efficient in generating a 3D CAD model in the initial design stage, because it has difficulty in handling frequent changes in design. Therefore, designers initially draw 2D drawings in the initial design stage, and generate the 3D CAD model from these 2D drawings in the detailed design and production design stages. In this study, the hull structural design system, which can efficiently generate a 3D CAD model through rapid modeling at an initial design stage, was developed in this study To evaluate the applicability of the developed system, we applied it to hull structural modeling of various ships such as a VLCC, a bulk carrier, etc. As a result, it could efficiently generate a 3D CAD model of a hull structure.

Joint Structural Importance of two Components

  • Abouammoh, A.M.;Sarhan, Ammar
    • International Journal of Reliability and Applications
    • /
    • v.3 no.4
    • /
    • pp.173-184
    • /
    • 2002
  • This paper introduces the joint structural importance of two components in a coherent system. Some relationships between joint structural importance and marginal structural importance are presented. It is shown that the sign of Joint structural importance can be determined, in advance, without computation in some special structures. The joint structural importance of two components in some series-parallel and parallel-series systems are established. Some practical examples are presented to elucidate some of the derived results.

  • PDF

Study on Structural Design and Analysis of Fuel System for Aircraft Auxiliary Fuel Tank (항공기 보조연료탱크 연료시스템 구조 설계 및 해석)

  • Choi, Won;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.60-65
    • /
    • 2019
  • This study did a structural design of a fuel system of auxiliary fuel tank applied to aircraft then analyzed it. The safety of the structural design result was investigated. Aluminum alloy metal structure was applied to the fuel system structure. The structural analysis was conducted using commercial finite element software. The design requirement was maximum accelerate condition of the structure. Therefore, structural design was done considering the maximum accelerate condition.

Structural Design of Composite Blade and Tower for Small Wind Turbine System

  • Jang, Mingi;Lee, Sanggyu;Park, Gwanmun;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • This work is to propose a structural design and analysis procedure for development of the low noise 1kW class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. The proposed structural configuration has a sandwich composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. Structural analysis including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the Finite Element Method, the load spectrum analysis and Miner rule. In order to evaluate the designed structure, the structural test was carried out and its test results were compared with the estimated results. Moreover Investigation on structural safety of tower was verified through structural analysis by FEM.

Structural Test and Evaluation of Composite Blade for Wind Turbine System

  • Ahn, Sungjin;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.17-20
    • /
    • 2016
  • In this work, a structural design on horizontal axis wind turbine blade using natural flax fiber composite is performed. The structural design results of flax/epoxy composite blade are compared with the design results of glass/epoxy composite blade. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Through the structural analyses, it is confirmed that the designed blade using natural composite is acceptable for structural safety, blade tip deflection, structural stability, resonance possibility, and weight. Finally, structural test of manufactured blade was performed. Through the structural test, it is confirmed that the designed blade is acceptable.