• Title/Summary/Keyword: Stuart Number

Search Result 11, Processing Time 0.023 seconds

A Numerical Study on the Heat Transfer Characteristics of Impinging Jet Flow in the Presence of Applied Magnetic Fields (자기장이 인가된 충돌제트의 열전달 특성에 관한 수치적 연구)

  • Lee Hyun Goo;Yoon Hyun Sik;Hong Seung Do;Ha Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.653-661
    • /
    • 2005
  • The present study numerically investigates two-dimensional fluid flow and heat transfer ir the confined jet flow in the presence of applied magnetic field. For the purpose of controlling vortex shedding and heat transfer, numerical simulations to calculate the fluid flow and heat transfer in the confined jet are performed for different Reynolds numbers in the absence and presence of magnetic fields and for different Prandtl numbers of 0.02 (liquid metal), 0.7 (air) and 7 (water) in the range of $0{\le}N{\le}0.05$, where N is the Stuart number (interaction parameter) which is the ratio of electromagnetic force to inertia force. The present study reports the detailed information of flow and thermal quantities in the channel at different Stuart numbers. As the intensity of applied magnetic fields increases, the vortex shedding formed in the channel becomes weaker and the oscillating amplitude of impinging jet decreases. The flow and thermal fields become the steady state if the Stuart number is greater than the critical value. Thus the Nusselt number at the stagnation point representing the heat transfer characteristics also vary as a function of Stuart number.

A Numerical Study on the Impinging Jet Flow Characteristics in the Presence of Applied Magnetic Fields (자기장이 인가된 충돌제트의 유동 특성에 관한 수치적 연구)

  • Lee Hyun Goo;Yoon Hyun Sik;Hong Seung Do;Ha Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.537-544
    • /
    • 2005
  • The present study numerically investigates two-dimensional fluid flow in the confined jet flow in the presence of applied magnetic field. Numerical simulations to calculate the fluid flow and heat transfer in the confined jet are performed for different Reynolds numbers in the absence and presence of magnetic fields in the range of $0{\le}N{\le}0.05$, where N is the Stuart number (interaction parameter) which is the ratio of electromagnetic force to inertia force. The present study reports the detailed information of flow in the channel at different Stuart numbers. As the intensity of applied magnetic fields increases, the vortex shedding formed in the channel becomes weaker and the oscillating amplitude of impinging jet decreases. The flow fields become the steady state if the Stuart number is greater than a critical value. Thus the pressure coefficients at the stagnation point also vary as a function of Stuart number.

Flow Control and Drag Reduction of a Circular Cylinder by an External Magnetic Field (자기장을 사용한 원형주상체 주위의 유동 제어 및 저항감소)

  • 윤현식;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.70-78
    • /
    • 2004
  • The present study numerically investigates two-dimensional laminar flow past a circular cylinder in an aligned magnetic field using the spectral method. Numerical simulations are performed for flow fields with Re=100 and 200 in the range of 0$\leq$N$\leq$10, where Ν is the Stuart number that is the ratio of electromagnetic force to inertial force. The present study reports the detailed information of flow quantities on the cylinder surface at different Stuart numbers. It is shown that the vortex shedding can be controlled by the magnetic force representing the Stuart number. As Ν increases, the vortex shedding becomes weaker, resulting in drag reduction whose magnitude is the largest at a critical value. In addition, as the magnetic force increases, the lift amplitude decreases, reaching zero at the critical number.

Characteristic study of heat transfer of laminar impinging jet in an aligned magnetic field (자기장이 인가된 영역에서의 층류 충돌제트의 열전달특성 변화에 대한 수치적 연구)

  • Lee, Hyun-Goo;Ha, Man-Yeong;Yoon, Hyun-Sik;Chun, Ho-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1447-1451
    • /
    • 2004
  • The laminar impinging jet thermal fields were investigated with or without magnetic fields. The transient phenomenon from steady to unsteady flow was founded at specific Reynolds number ranges. In unsteady flow region, the magnetic fields make flow stable. So the characteristics of heat transfer at impingement wall are changed

  • PDF

Characteristic study of fluid flow of laminar impinging jet in an aligned magnetic field (자기장이 인가된 영역에서의 층류 충돌제트의 유동특성 변화에 대한 수치적 연구)

  • Lee, Hyun-Goo;Ha, Man-Yeong;Yoon, Hyun-Sik;Chun, Ho-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1845-1850
    • /
    • 2004
  • The laminar impinging jet flow fields were investigated with or without magnetic fields. The transient phenomenon from steady to unsteady flow was founded at specific Reynolds number ranges. In unsteady flow region, the magnetic fields make flow stable. So the characteristics of fluid flow at impingement wall are changed

  • PDF

THE CONTRIBUTION TO THE EXTRAGALACTIC γ-RAY BACKGROUND BY HADRONIC INTERACTIONS OF COSMIC RAYS PRODUCING EUV EMISSION IN CLUSTERS OF GALAXIES

  • KUO PING-HUNG;BOWYER STUART;HWANG CHORNG- YUAN
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.597-600
    • /
    • 2004
  • A substantial number of processes have been suggested as possible contributors to the extragalactic $\gamma$-ray background (EGRB). Yet another contribution to this background will be emission produced in hadronic interactions of cosmic-ray protons with the cluster thermal gas; this class of cosmic rays (CRs) has been shown to be responsible for the EUV emission in the Coma Cluster of galaxies. In this paper we assume the CRs in the Coma Cluster is prototypic of all clusters and derive the contribution to the EGRB from all clusters over time. We examine two different possibilities for the scaling of the CR flux with cluster size: the number density of the CRs scale with the number density of the thermal plasma, and alternatively, the energy density of the CRs scale with the energy density of the plasma. We find that in all scenarios the EGRB produced by this process is sufficiently low that it will not be observable in comparison with other mechanisms that are likely to produce an EGRB.

A Study on Motives of Chinese Female Audiences for Watching Korean Fantasy TV Dramas

  • Wu, Yue;Shen, Xuezheng;Lee, Jong Yoon
    • International Journal of Contents
    • /
    • v.17 no.2
    • /
    • pp.32-40
    • /
    • 2021
  • With love as the theme and mythology, ghosts and magic as elements, Korean fantasy TV dramas have set romantic and beautiful plots and attracted a large number of Chinese female audiences. Based on Melodramatic Imagination and Stuart Hall's theory of "encoding/decoding", this paper investigated Chinese female audiences' motives of watching Korean fantasy TV dramas Hotel Druena through the form of focus group interviews to interpret reasons for the popularity of Korean fantasy TV dramas and Chinese women's overall cognition of Korean TV dramas from the perspective of female audiences. Thinking that South Korea's fantasy dramas are good at women's pursuit and desire for emotional elements, women who watch this type of south Korean TV dramas are temporarily relieving pressure of real life, thus satisfying the needs of female gaze and consumption.

EUV AND SOFT X-RAY EMISSION IN CLUSTERS OF GALAXIES

  • BOWYER STUART
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.295-297
    • /
    • 2004
  • Observations with EUVE, ROSAT, and BeepoSAX have shown that some clusters of galaxies produce intense EUV emission. These findings have produced considerable interest; over 100 papers have been published on this topic in the refereed literature. A notable suggestion as to the source of this radiation is that it is a 'warm' (106 K) intracluster medium which, if present, would constitute the major baryonic component of the universe. A more recent variation of this theme is that this material is 'warm-hot' intergalactic material condensing onto clusters. Alternatively, inverse Compton scattering of low energy cosmic rays against cosmic microwave background photons has been proposed as the source of this emission. Various origins of these particles have been posited, including an old (${\~}$Giga year) population of cluster cosmic rays; particles associated with relativistic jets in the cluster; and cascading particles produced by shocks from sub-cluster merging. The observational situation has been quite uncertain with many reports of detections which have been subsequently contradicted by analyses carried out by other groups. Evidence supporting a thermal and a non-thermal origin has been reported. The existing EUV, FUV, and optical data will be briefly reviewed and clarified. Direct observational evidence from a number of different satellites now rules out a thermal origin for this radiation. A new examination of subtle details of the EUV data suggests a new source mechanism: inverse Compton scattered emission from secondary electrons in the cluster. This suggestion will be discussed in the context of the data.

DETECTION OF EMISSION FROM WARM-HOT GAS IN THE UNIVERSE WITH XMM?

  • BOWYER STUART;VIKHLININ ALEXEY
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.579-581
    • /
    • 2004
  • Recently, claims have been made of the detection of 'warm-hot' gas in the intergalactic medium. Kaastra et al. (2003) claimed detection of ${\~} 10^6$ K material in the Coma Cluster but studies by Arnaud et al. (2001), and our analysis of the Chandra observations of Coma (Vikhlinin et al. 2001), find no evidence for a $10^6$ K gas in the cluster. Finoguenov et al. (2003) claimed the detection of $3 {\times} 10^6$ gas slightly off-center from the Coma Cluster. However, our analysis of ROSAT data from this region shows no excess in this region. We propose an alternative explanation which resolves all these conflicting reports. A number of studies (e.g. Robertson et al., 2001) have shown that the local interstellar medium undergoes charge exchange with the solar wind. The resulting recombination spectrum shows lines of O VII and O VIII (Wargelin et al. 2004). Robertson & Cravens (2003) have .shown that as much as $25\%$ of the Galactic polar flux is heliospheric recombination radiation and that this component is highly variable. Sporadic heliospheric emission could account for all the claims of detections of 'warm-hot' gas and explain the conflicts cited above.

Statistical Properties of Random Sparse Arrays with Application to Array Design (어레이 설계 응용을 위한 랜덤어레이의 통계적 성질)

  • Kook, Hyung-Seok;Davies, Patricia;Bolton, J.Stuart
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1493-1510
    • /
    • 2000
  • Theoretical models that can be used to predict the range of main lobe widths and the probability distribution of the peak sidelobe levels of two-dimensionally sparse arrays are presented here. The arrays are considered to comprise microphones that are randomly positioned on a segmented grid of a given size. First, approximate expressions for the expected squared magnitude of the aperture smoothing function and the variance of the squared magnitude of the aperture smoothing function about this mean are formulated for the random arrays considered in the present study. By using the variance function, the mean value and the lower end of the range i.e., the first I percent of the mainlobe distribution can be predicted with reasonable accuracy. To predict the probability distribution of the peak sidelobe levels, distributions of levels are modeled by a Weibull distribution at each peak in the sidelobe region of the expected squared magnitude of the aperture smoothing function. The two parameters of the Weibull distribution are estimated from the means and variances of the levels at the corresponding locations. Next, the probability distribution of the peak sidelobe levels are assumed to be determined by a procedure in which the peak sidelobe level is determined as the maximum among a finite number of independent random sidelobe levels. It is found that the model obtained from the above approach predicts the probability density function of the peak sidelobe level distribution reasonably well for the various combinations of two different numbers of microphones and grid sizes tested in the present study. The application of these models to the design of random, sparse arrays having specified performance levels is also discussed.

  • PDF