• Title/Summary/Keyword: Styrene-butadiene rubber

Search Result 167, Processing Time 0.02 seconds

Analytical Method for Determination of Microstructure of SBR and SBR Content in Blended Rubber Composites Using Pyrolytic Technique

  • Eunji Chae;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.188-196
    • /
    • 2022
  • Styrene-butadiene rubber(SBR) is a copolymer of styrene and butadiene. It is composed of 1,2-unit, 1,4-unit, and styrene, and its properties are dependent on its microstructure. In general, rubber composites contain a single rubber or a blended rubber. Similarly, SBR is used by mixing with natural rubber(NR) and butadiene rubber(BR). The composition of a rubber article affects its physical and chemical properties. Herein, an analytical method for determining the microstructure of SBR using via pyrolysis is introduced. Pyrolysis-gas chromatography/mass spectrometry is widely used to analyze the microstructure of polymeric materials. The microstructure of SBR can be determined by analyzing the principal pyrolysis products formed from SBR, such as 4-vinylcyclohexene, styrene, 2-phenylpropene, 3-phenylcyclopentene, and 4-phenylcyclohexene. An analytical method for determining the composition of SBR/NR, SBR/BR, and SBR/NR/BR blends via pyrolysis is introduced. The composition of blended rubber can be determined by analyzing the principal pyrolysis products formed from each rubber component.

Building Calibration Curve for Py-GC/MS Analysis of SBR/BR Blend Rubber Compounds

  • Chae, Eunji;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.281-288
    • /
    • 2020
  • A calibration curve is needed to determine the SBR and BR blend ratio of SBR/BR blend rubber compounds using pyrolysis-gas chromatography/mass chromatography (Py-GC/MS) or Py-GC. In general, a calibration curve is obtained using reference SBR/BR vulcanizates with various blend ratios. In this study, the calibration curves were obtained using reference samples made of rubber solutions and were compared to those plotted using the reference SBR/BR vulcanizates. Calibration curves using variations of 1,3-butadiene/styrene, 4-vinylcyclohexene (VCH)/styrene, 2-phenylpropene (PhP)/butadiene, PhP/VCH, 4-phenylcyclohexene (PhCH)/butadiene, and PhCH/VCH ratios with the BR content were examined for the suitability. We found that the calibration curves obtained using the mixed rubber solution references (1,3-butadiene/styrene and PhP/butadiene) could replace those constructed using the reference SBR/BR vulcanizates. The calibration curves of 1,3-butadiene/styrene and PhP/butadiene obtained using the raw references can be used for the determination of the SBR/BR blend ratios by applying some correction factors.

Electrical Conduction and Resistance Characteristics of Styrene Butadiene Rubber (SBR) Composites Containing Carbon Black (Styrene Butadiene Rubber (SBR)/ Carbon Black 복합체의 전기저항 및 전기전도 특성)

  • Kim, Do-Hyun;Lee, Jung-Hee;Sohn, Ho-Soung;Lee, Kyung-Won
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.246-254
    • /
    • 1998
  • In order to investigate the characteristics of resistance and conduction of vulcanized styrene butadiene rubber (SBR)/ carbon black (CB) composites, surface/ volume resistivity, point to point resistance, decay time, and electrical conduction experiments with four different kinds of non-conductive carbon black were measured. When about 50phr of carbon black were loaded in SBR, all resistivites suddenly decreased and critical region (Rc) was shown. Current densities of SBR/CB composites showed critical point (Pc) and increased with the electric fields. Electrical conduction mechanisms of SBR/CB composites could be considered as the ohmic conduction at low electric fields and the space charge limited conduction (SCLC) at high electric fields, respectively.

  • PDF

Ultraviolet Photografting Reaction of Acrylamide onto Styrene-Butadiene Rubber (Styrene-Butadiene 고무의 아크릴아미드 UV 광그라프팅 반응)

  • Lee, K.I.;Ryu, S.H.
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.363-369
    • /
    • 1998
  • Photografting reaction onto styrene-butadiene rubber (SBR) as a function of monomer concentration, irradiation time and carbon black content has been studied using ultraviolet (UV). Acrylamide and benzophenone are used as monomer and photoinitiator, respectively. FT-IR ATR and static contact angle analysis using distilled water are used to measure the graft ratio of acrylamide onto SBR surface. Graft ratio of acrylamide increases with acrylamide concentration and irradiation time and contact angle tends to decrease with increasing graft ratio. It is observed that graft ratio increases with carbon black content.

  • PDF

Effect of Blade Materials on Wear Behaviors of Styrene-Butadiene Rubber and Butadiene Rubber

  • Lee, Gi-Bbeum;Shin, Beomsu;Han, Eunjung;Kang, Dawon;An, Dae Joon;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.172-178
    • /
    • 2021
  • The wear behavior of styrene-butadiene rubber (SBR) and butadiene rubber (BR) was investigated using a blade-type abrader with a steel blade (SB), Ti-coated tungsten carbide blade (TiB), or zirconia blade (ZB). The wear rate of SBR against SB and TiB decreased with increasing number of revolutions because of the blunting of the blades during wear. However, the wear rate of SBR against ZB remained nearly constant with little blade blunting. Generally, the wear rate of BR was largely unaffected by the blade material used for abrasion. The wear rate and frictional coefficient of SBR were found to be higher than those of BR at similar levels of frictional energy input. A power-law relationship was found between the wear rate and frictional energy input during abrasion. A well-known Schallamach pattern was observed for SBR, while a much finer pattern was observed for BR. The blade material affects the wear rate of the rubbers because the macromolecular free radicals and blade tend to undergo mechano-chemical reactions. The inorganic ZB was found to be the most inert for such a mechanism.

Filler-Polymer Interactions in Filled Styrene-Butadiene Rubber Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.45-50
    • /
    • 2001
  • Formation of bound rubber depends on the filler-polymer interactions including physical adsorption, chemisorption, and mechanical interaction. Bound rubbers consist of tightly and loosely bound ones. Styrene-butadiene rubber (SBR) is composed of styrene, 1,2-, cis-1,4-, and trans-1,4-units. Filler-polymer interactions of each components of SBR with fillers, carbon black and silica, were studied by analysis of microstructure of the bound rubber. Filler-polymer interaction of the 1,2-unit with the fillers was found to be stronger than those of the other components and this phenomenon was shown more clearly in the tightly bound rubber.

  • PDF

Analysis of Rheological Properties for Styrene Copolymers (스티렌 공중합체의 유변학적 특성 해석)

  • 한민현
    • The Korean Journal of Rheology
    • /
    • v.4 no.1
    • /
    • pp.46-51
    • /
    • 1992
  • 본 연구에서는 열가소성고무를 중심으로 한 스티렌 공중합체의 유변학적 특성을 Couette 보정치를 사용하여 해석하였다. 실험재료로는 SBS(Styrene-Butadiene-Styrene), SEBS(Styrene-Ethylene/Buthylene-Styrene), SIS(Styrene-Isoprene-Styrene)을 사용하였고 탄성체의 성격을 비교하기 위하여SBS(Styrene-Butadiene Rubber)와 IR(Isoprene Rubber)를 사용하였다, 실험결과 Couette 보정치는 온도가 증가할수록 감소하였다. 또한 열가소성 고부 (SBS, SEBS, SIS)의 보정치는 거의 비슷한 값을 나타내었으며 고무(IR, SBR)의 보정치는 열가소성고무에서보다 다소 높은 값을 나타내었다. 충진제를 첨가하였을 경우 충진제의 양 이 증가할수록 Couette 보정치는 감소하였다.

  • PDF

Effect of Process Aids on Rheological and Mechanical Properties of Styrene-Butadiene Rubber Compound (가공조제가 Styrene-Butadiene Rubber 배합고무의 유변특성 및 기계적 물성에 미치는 영향)

  • Kang, Yong-Gu;Jung, Hoon;Kim, Tae-Nyun;Kim, Wan-Doo;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.170-176
    • /
    • 2002
  • Effects of type and loading level of process aids on the rheological and mechanical properties of styrene-butadiene rubber (SBR) compound were investigated. Five commercial grades of process aids composed of fatty acids and their various derivatives such as metal salts, esters, alcohols and amides were selected. The reduction in Mooney and shear viscosities was higher for metal salt-type process aids but lower for the process aids containing high molecular weight fatty acid alcohols and esters with increasing the loading of process aids. Tensile modulus generally decreased, while heat-build-up increased with increased process aids content. No considerable effect was observed for ulimate properties such as tensile strength and elongation at break.

Electron Beam Modification of Dual Phase Filler: Surface Characteristics and its Influence on the Properties of Styrene-Butadiene Rubber Vulcanizates

  • Shanmugharaj A. M.
    • Rubber Technology
    • /
    • v.5 no.2
    • /
    • pp.94-103
    • /
    • 2004
  • The present work describes modification of dual phase filler by electron beam irradiation in presence of multifunctional acrylates like trimethylol propane triacrylate (TMPTA) or silane coupling agent like bis (3-triethoxysilylpropyltetrasulphide) and in-fluence of the modified fillers on the physical properties of styrene-butadiene rubber (SBR) vulcanizates. Modulus at 300 % elongation increases whereas the tensile strength decreases with increase in radiation dose for the dual phase filler loaded styrene-butadiene rubber vulcanizates (SBR). However, modulus and tensile strength significantly increase, which is more, pronounced at higher filler loadings for TMPTA modified dual phase filler loaded SBR. These changes in properties are explained by the equilibrium swelling data and Kraus plot interpreting the polymer-filler interaction. Electron beam modification of the filler results in a reduction of tan ${\delta}$ at $70^{\circ}C$, a parameter for rolling resistance and increase in tan ${\delta}$ at $0^{\circ}C$, a parameter for wet skid resistance of the SBR vulcanizates. Finally, the influence of modified fillers on the properties like abrasion resistance, tear strength and fatigue failure and the improvement in the properties have been explained in terms of polymer-filler interaction.

  • PDF