• Title/Summary/Keyword: Sub-Band Reliability

Search Result 14, Processing Time 0.021 seconds

Estimation and Weighting of Sub-band Reliability for Multi-band Speech Recognition (다중대역 음성인식을 위한 부대역 신뢰도의 추정 및 가중)

  • 조훈영;지상문;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.552-558
    • /
    • 2002
  • Recently, based on the human speech recognition (HSR) model of Fletcher, the multi-band speech recognition has been intensively studied by many researchers. As a new automatic speech recognition (ASR) technique, the multi-band speech recognition splits the frequency domain into several sub-bands and recognizes each sub-band independently. The likelihood scores of sub-bands are weighted according to reliabilities of sub-bands and re-combined to make a final decision. This approach is known to be robust under noisy environments. When the noise is stationary a sub-band SNR can be estimated using the noise information in non-speech interval. However, if the noise is non-stationary it is not feasible to obtain the sub-band SNR. This paper proposes the inverse sub-band distance (ISD) weighting, where a distance of each sub-band is calculated by a stochastic matching of input feature vectors and hidden Markov models. The inverse distance is used as a sub-band weight. Experiments on 1500∼1800㎐ band-limited white noise and classical guitar sound revealed that the proposed method could represent the sub-band reliability effectively and improve the performance under both stationary and non-stationary band-limited noise environments.

Sub-band Spreading Technique for Adaptive Modulation in OFDM Systems

  • Jung, Bang-Chul;Kwon, Jae-Kyun;Jin, Hu;Sung, Dan-Keun
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.71-78
    • /
    • 2008
  • We propose a sub-band spreading technique for adaptive modulation (AM) in orthogonal frequency division multiplexing (OFDM) systems in order to reduce signaling overheads and to average frequency selective fading channels causing different signal-to-noise ratio (SNR) values for subcarriers in each subband. The conventional sub-band based AM schemes can also reduce signaling overheads and complexity for allocating a resource per sub-band at a time. However, they may suffer from the channel variation in a sub-band when the sub-band size is larger than the channel coherence bandwidth (BW). The sub-band spreading at the transmitter enables the received symbols in each sub-band to have an identical reliability even in a frequency selective fading channel. We rigorously analyze the averaged SNR value at the receiver of the sub-band spreading system and the analyzed average SNR in a sub-band is used for an adaptation criterion. The proposed AM scheme outperforms the conventional sub-band based OFDM scheme without spreading, and it can yield better throughput performance than the conventional subcarrier based AM schemes when we consider the signaling overheads.

Noise Rabust Speaker Verification Using Sub-Band Weighting (서브밴드 가중치를 이용한 잡음에 강인한 화자검증)

  • Kim, Sung-Tak;Ji, Mi-Kyong;Kim, Hoi-Rin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.279-284
    • /
    • 2009
  • Speaker verification determines whether the claimed speaker is accepted based on the score of the test utterance. In recent years, methods based on Gaussian mixture models and universal background model have been the dominant approaches for text-independent speaker verification. These speaker verification systems based on these methods provide very good performance under laboratory conditions. However, in real situations, the performance of speaker verification system is degraded dramatically. For overcoming this performance degradation, the feature recombination method was proposed, but this method had a drawback that whole sub-band feature vectors are used to compute the likelihood scores. To deal with this drawback, a modified feature recombination method which can use each sub-band likelihood score independently was proposed in our previous research. In this paper, we propose a sub-band weighting method based on sub-band signal-to-noise ratio which is combined with previously proposed modified feature recombination. This proposed method reduces errors by 28% compared with the conventional feature recombination method.

Failure Analysis of Metallic Components (금속소재 부품의 고장분석 사례)

  • Song Jin-Hwa;Hong Ki-Jung;Chang Chang-Hwan;Kim Young-Sub
    • Journal of Applied Reliability
    • /
    • v.6 no.1
    • /
    • pp.51-61
    • /
    • 2006
  • Failure analyses were conducted on a crank shaft and a chock liner by using X-ray diffraction, optical microscopy and SEM/EDS techniques. In the crank shaft, a crack developed where a maximum tensile stress coincided with band structure formed by hot forging. The maximum tensile stress was observed to originate from volume expansion during high frequency induction heat treatment and the band structure to develop between upper and lower dies during hot forging. In the chock liner, the wear mechanism varied with the chemical affinity and hardness of liner material relative to friction pair of housing liner. Brass of low chemical affinity and hardness compared to housing liner showed uniform adhesive wear. STS 304 and STS 420J2 of high chemical affinity showed galling and scoring respectively.

  • PDF

Effect of SiO2 Buffer Layer Thickness on the Device Reliability of the Amorphous InGaZnO Pseudo-MOS Field Effect Transistor (SiO2 완충층 두께에 따른 비정질 InGaZnO Pseudo-MOS Field Effect Transistor의 신뢰성 평가)

  • Lee, Se-Won;Hwang, Yeong-Hyeon;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.24-28
    • /
    • 2012
  • In this study, we fabricated an amorphous InGaZnO pseudo-MOS transistor (a-IGZO ${\Psi}$-MOSFET) with a stacked $Si_3N_4/SiO_2$ (NO) gate dielectric and evaluated reliability of the devices with various thicknesses of a $SiO_2$ buffer layer. The roles of a $SiO_2$ buffer layer are improving the interface states and preventing degradation caused by the injection of photo-created holes because of a small valance band offset of amorphous IGZO and $Si_3N_4$. Meanwhile, excellent electrical properties were obtained for a device with 10-nm-thick $SiO_2$ buffer layer of a NO stacked dielectric. The threshold voltage shift of a device, however, was drastically increased because of its thin $SiO_2$ buffer layer which highlighted bias and light-induced hole trapping into the $Si_3N_4$ layer. As a results, the pseudo-MOS transistor with a 20-nm-thick $SiO_2$ buffer layer exhibited improved electrical characteristics and device reliability; field effective mobility(${\mu}_{FE}$) of 12.3 $cm^2/V{\cdot}s$, subthreshold slope (SS) of 148 mV/dec, trap density ($N_t$) of $4.52{\times}1011\;cm^{-2}$, negative bias illumination stress (NBIS) ${\Delta}V_{th}$ of 1.23 V, and negative bias temperature illumination stress (NBTIS) ${\Delta}V_{th}$ of 2.06 V.

Improvement of Reliability by Using Fluorine Doped Tin Oxide Electrode for Ta2O5 Based Transparent Resistive Switching Memory Devices

  • Lee, Do Yeon;Baek, Soo Jung;Ryu, Sung Yeon;Choi, Byung Joon
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Purpose: Fluorine doped tin oxide (FTO) bottom electrode for $Ta_2O_5$ based RRAM was studied to apply for transparent resistive switching memory devices owing to its superior transparency, good conductivity and chemical stability. Methods: $ITO/Ta_2O_5/FTO$ (ITF) and $ITO/Ta_2O_5/Pt$ (ITP) devices were fabricated on glass and Si substrate, respectively. UV-visible (UV-VIS) spectroscopy was used to examine transparency of the ITF device and its band gap energy was determined by conventional Tauc plot. Electrical properties, such as electroforming and voltage-induced RS characteristics were measured and compared. Results: The device with an FTO bottom electrode showed good transparency (>80%), low forming voltage (~-2.5V), and reliable bipolar RS behavior. Whereas, the one with Pt electrode showed both bipolar and unipolar RS behaviors unstably with large forming voltage (~-6.5V). Conclusion: Transparent and conducting FTO can successfully realize a transparent RRAM device. It is concluded that FTO electrode may form a stable interface with $Ta_2O_5$ switching layer and plays as oxygen ion reservoir to supply oxygen vacancies, which eventually facilitates a stable operation of RRAM device.

Variation of the Si-induced Gap State by the N defect at the Si/SiO2 Interface

  • Kim, Gyu-Hyeong;Jeong, Seok-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.128.1-128.1
    • /
    • 2016
  • Nitrided-metal gates on the high-${\kappa}$ dielectric material are widely studied because of their use for sub-20nm semiconductor devices and the academic interest for the evanescent states at the Si/insulator interface. Issues in these systems with the Si substrate are the electron mobility degradation and the reliability problems caused from N defects that permeates between the Si and the $SiO_2$ buffer layer interface from the nitrided-gate during the gate deposition process. Previous studies proposed the N defect structures with the gap states at the Si band gap region. However, recent experimental data shows the possibility of the most stable structure without any N defect state between the bulk Si valence band maximum (VBM) and conduction band minimum (CBM). In this talk, we present a new type of the N defect structure and the electronic structure of the proposed structure by using the first-principles calculation. We find that the pair structure of N atoms at the $Si/SiO_2$ interface has the lowest energy among the structures considered. In the electronic structure, the N pair changes the eigenvalue of the silicon-induced gap state (SIGS) that is spatially localized at the interface and energetically located just above the bulk VBM. With increase of the number of N defects, the SIGS gradually disappears in the bulk Si gap region, as a result, the system gap is increased by the N defect. We find that the SIGS shift with the N defect mainly originates from the change of the kinetic energy part of the eigenstate by the reduction of the SIGS modulation for the incorporated N defect.

  • PDF

Energy Efficient Sequential Sensing in Multi-User Cognitive Ad Hoc Networks: A Consideration of an ADC Device

  • Gan, Xiaoying;Xu, Miao;Li, He
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.188-194
    • /
    • 2012
  • Cognitive networks (CNs) are capable of enabling dynamic spectrum allocation, and thus constitute a promising technology for future wireless communication. Whereas, the implementation of CN will lead to the requirement of an increased energy-arrival rate, which is a significant parameter in energy harvesting design of a cognitive user (CU) device. A well-designed spectrum-sensing scheme will lower the energy-arrival rate that is required and enable CNs to self-sustain, which will also help alleviate global warming. In this paper, spectrum sensing in a multi-user cognitive ad hoc network with a wide-band spectrum is considered. Based on the prospective spectrum sensing, we classify CN operation into two modes: Distributed and centralized. In a distributed network, each CU conducts spectrum sensing for its own data transmission, while in a centralized network, there is only one cognitive cluster header which performs spectrum sensing and broadcasts its sensing results to other CUs. Thus, a wide-band spectrum that is divided into multiple sub-channels can be sensed simultaneously in a distributed manner or sequentially in a centralized manner. We consider the energy consumption for spectrum sensing only of an analog-to-digital convertor (ADC). By formulating energy consumption for spectrum sensing in terms of the sub-channel sampling rate and whole-band sensing time, the sampling rate and whole-band sensing time that are optimal for minimizing the total energy consumption within sensing reliability constraints are obtained. A power dissipation model of an ADC, which plays an important role in formulating the energy efficiency problem, is presented. Using AD9051 as an ADC example, our numerical results show that the optimal sensing parameters will achieve a reduction in the energy-arrival rate of up to 97.7% and 50% in a distributed and a centralized network, respectively, when comparing the optimal and worst-case energy consumption for given system settings.

Joint Estimation Schemes of Carrier and Sampling Frequency Offsets for MB-OFDM UWB Systems (MB-OFDM UWB 시스템을 위한 반송파 및 샘플링 주파수 오프셋 결합 추정 기법)

  • Cho, Chang-Hoon;Yang, Suck-Chel;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.965-975
    • /
    • 2005
  • In this paper, we propose and evaluate joint carrier and sampling frequency offset estimation schemes based on the channel estimation sequences in PLCP (Physical Layer Convergence Procedure) preamble for the proper and effcient synchronization of the MB-OFDM WB (Multi-Band Orthogonal Frequency Division Multiplexing Ultra Wide Band) systems which have recently drawn explosive attention for future W-PAN (Wireless Personal Area Network) applications. In the joint estimation schemes, we first estimate the sampling frequency offset, and then estimate the carrier frequency offset using the estimated sampling frequency offset. Moreover, to improve the reliability of the estimated offset values, each process uses a combination scheme based on weighting factors. Simulation results using IEEE 802.15 Task Group 3a UWB channel models reveal that the estimation scheme using the simple weighting factors based on easily-measurable received signal power of each sub-channel shows favorably comparable performance to the ideal scheme using the weighting factors based on the perfectly-estimated frequency response of the channel.

Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure (다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석)

  • Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Tae-Kyung Lee;Hyoung-Jae Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3 is a material with a wide band gap of ~4.8 eV and a high breakdown-voltage of 8 MV/cm, and is attracting much attention in the field of power device applications. In addition, compared to representative WBG semiconductor materials such as SiC, GaN and Diamond, it has the advantage of enabling single crystal growth with high growth rate and low manufacturing cost [1-4]. In this study, we succeeded in growing a 10 mm thick β-Ga2O3 single crystal doped with 0.3 mol% SnO2 through the EFG (Edge-defined Film-fed Growth) method using multi-slit structure. The growth direction and growth plane were set to [010]/(010), respectively, and the growth speed was about 12 mm/h. The grown β-Ga2O3 single crystal was cut into various crystal planes (010, 001, 100, ${\bar{2}}01$) and surface processed. The processed samples were compared for characteristics according to crystal plane through analysis such as XRD, UV/VIS/NIR/Spec., Mercury Probe, AFM and Etching. This research is expected to contribute to the development of power semiconductor technology in high-voltage and high-temperature applications, and selecting a substrate with better characteristics will play an important role in improving device performance and reliability.