• Title/Summary/Keyword: Subjective sound quality characteristic

Search Result 17, Processing Time 0.027 seconds

Analysis of Subjective Sound Quality Characteristics for the HVAC System using the Design of Experiments (실험계획법을 이용한 차량 공조시스템의 음질 특성 분석)

  • Oh Jae-Eung;Yun Taekun;bin Abu Aminudin;Sim Hyun-Jin;Lee Jung-Youn;Kim Sung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.59-63
    • /
    • 2005
  • Since human listening is very sensitive when the sound hit him, the subjective index of sound quality is required. Therefore, at each situation of sound evaluation its composed with the sound quality factor. But, when substituting the level of one frequency band we could not see the tendency of substitution at whole frequency band during the sound quality evaluation. In this study a design of experiment is used. The frequency domain is divided into an equally 12 parts and each level of domain whether is given increase or decrease due to the change of frequency band based on 'sharp' and 'annoy' of the sound quality is analyzed. By using the design of experiment the number of test is reduce very effectively by the number of experiment and each band the main effect will be as a solution. The case of sound quality for 'sharp' and 'annoy' at each band, the change of band (increase or decrease of sound pressure or keep maintain) which will be the most effects on the characteristics of sound quality can be identify and this will be able to us to select the objective frequency band. Through these obtained results the physical changes of level at arbitrary frequency domain sensitivity can be adapted.

Analysis of Subjective Sound Quality Characteristics for the HVAC using the Design of Experiments : Sharp, Annoy (실험계획법을 이용한 차량공조시스템의 음질 특성 분석)

  • Yun, Tae-Kun;Sim, Hyun-Jin;Lee, Jung-Youn;Oh, Jae-Eung;Kim, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.634-637
    • /
    • 2005
  • A subjective index of sound quality when it hit him is required since human listening is very sensitive and complex. Sound quality evaluation it leads consequently rightly in each situation and it composes a sound quality factor. But one of the levels in interest frequency range is substitute we cannot see the tendency of frequency substitute at whole that is executes a clear voice evaluation. Design of experiment is used and dividing 12 equally in frequency domain, the sound quality using sharpness and annoyance is performed by modifying each of frequency domains. Design of experiment method reduces much number experiment very effectively and each main effect of domain solution analysis, such as a case of sharpness and annoyance, the change of domain (increase and decrease of sound pressure level, or change nil) can grasp a type of effect should have influenced to a sound quality, and it will be able to select the objective frequency domain which hits to the sound quality. Through these obtained results the physical changes of level at arbitrary frequency domain sensitivity can be adapted.

  • PDF

Construction of Sound Quality Index for the Vehicle HVAC System Using Regression Model and Neural Network Model (회귀모형과 신경망모형을 이용한 차량공조시스템의 음질 인덱스 구축)

  • Park, Sang-Gil;Lee, Hae-Jin;Sim, Hyun-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1443-1448
    • /
    • 2006
  • The reduction of the vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the HVAC sound among the vehicle interior noise has been reflected sensitively in the side of psychology. Even though the HVAC noise is not louder than overall noise level, it clearly affects subjective perception in the way of making a diver become nervous or annoyed. Therefore, these days a vehicle engineer takes aim at developing sound quality as well as reduction of noise. In this paper, we acquired noises in the HVAC from many vehicles. Through the objective and subjective sound quality evaluation with acquiring noises caused by the vehicle HVAC system, the simple and multiple regression models were obtained for the subjective evaluation 'Pleasant' using the sound quality metrics. The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriation and accuracy. Furthermore, the neural network model were obtained using three inputs(loudness, sharpness and roughness) of the sound quality metrics and one output(subjective 'Pleasant'). And then the models were compared with correlations between sound quality index outputs and hearing test results for 'Pleasant'. As a result of application of the sound quality index, the neural network was verified with the largest correlation of the sound quality index.

  • PDF

Sound Metric for the Impact Sound of a Car (자동차 임팩트 소음에 대한 음질 요소 개발)

  • Park, Sang-Won;Kim, Ho-Wuk;Na, Eun-Woo;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.66-73
    • /
    • 2010
  • Vehicles experience the impact due to harsh road conditions. Contact with a barrier on a road induces vehicles to vibrate, which brings about an impact sound. The attenuation of the impact sound is an important issue since passengers may complain about the impact noise. However, the perfect removal of impact noise is not possible as most of impact noise is caused by external conditions. It is thus necessary to make vehicles to possess more desirable sound quality characteristic of impact sound. More research is needed on objective attributes of impact sound; it is not a simple matter since impact noise is transient in nature and has a high level of sound at an instantaneous moment. A new objective attribute of impact noise is designed by using wavelet transform. Wavelet transform is appropriate for the analysis of transient signals such as impact noise. The usefulness of new objective attribute, which is a sound metric, is examined by comparison with the mean subjective rating for real impact noise of passenger cars. The new sound metric has better correlation with the mean subjective rating than already existing sound metrics

Sound Quality Evaluation for the Vehicle HVAC System Using Optimum Layout of Damping material (제진재의 최적배치를 이용한 차량공조시스템의 음질평가)

  • Hwang, Dong-Kun;Abu, Aminudin Bin;Lee, Jung-Youn;Oh, Jae-Eung;Yoo, Dong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.629-633
    • /
    • 2005
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the HVAC sound among the vehicle interior noise has been reflected sensitively in the side of psychology. In previous study, we have developed to verify identification of source for the vehicle HVAC system through multiple-dimensional spectral analysis. Also we carried out objective assessments on the vehicle HVAC noises and subjective assessments have been already performed with 30 subjects. In this study, the linear regression models were obtained for the subjective evaluation and the sound quality metrics. The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriation and accuracy. Appropriation of regression model is necessary to $R^2$ value and F-value. And testing for regression model is necessary to Independence, Homoscedesticity and Normality. Also we selected optimum layout of damping material using Taguchi method. As a result of application, sound quality is improved by more quiet, powerful, expensive, smooth.

  • PDF

Improvement of Sound Quality for the Vehicle HVAC System Using Optimum Layout of Damping Material (제진재의 최적배치를 이용한 차량공조시스템의 음질개선)

  • Oh Jae-Eung;Hwang Dong-Kun;Park Sang-Gil;Yoon Tae-Kun;Sim Hyoun-Jin;Lee Jung-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.728-733
    • /
    • 2006
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the HVAC sound among the vehicle interior noise has been reflected sensitively in the side of psychology. In previous study, we have developed to verify identification of source for the vehicle HVAC system through multiple-dimensional spectral analysis. Also we carried out objective assessments on the vehicle HVAC noises and subjective assessments have been already performed with 30 subjects. In this study, the linear regression models were obtained for the subjective evaluation and the sound quality metrics. The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriation and accuracy. Appropriation of regression model is necessary to $R^2$ value and F-value. And testing for regression model is necessary to independence, homoscedesticity and normality. Also we selected optimum layout of damping material using Taguchi method. As a result of application, sound quality is improved more quietly, powerfully, even though costly, and smoothly.

Construction and Comparison of Sound Quality Index for the Vehicle HVAC System Using Regression Model and Neural Network Model (회귀모형과 신경망모형을 이용한 차량공조시스템의 음질 인덱스 구축 및 비교)

  • Park, Sang-Gil;Lee, Hae-Jin;Sim, Hyun-Jin;Lee, You-Yub;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.897-903
    • /
    • 2006
  • The reduction of the vehicle interior noise has been the main interest of noise and vibration harshness (NVH) engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. In particular, the heating, ventilation and air conditioning (HVAC) system sound among the vehicle interior noise has been reflected sensitively in psychoacoustics view point. Even though the HVAC noise is not louder than overall noise level, it clearly affects subjective perception to drivers in the way of making to be nervous or annoyed. Therefore, these days a vehicle engineer takes aim at developing sound quality as well as reduction of noise. In this paper, we acquired noises in the HVAC from many vehicles. Through the objective and subjective sound quality (SQ) evaluation with acquiring noises recorded by the vehicle HVAC system, the simple and multiple regression models were obtained for the subjective evaluation 'Pleasant' using the semantic differential method (SDM). The regression procedure also allows you to produce diagnostic statistics to evaluate the regression estimates including appropriation and accuracy. Furthermore, the neural network (NN) model were obtained using three inputs(loudness, sharpness and roughness) of the SQ metrics and one output(subjective 'Pleasant'). Because human's perception is very complex and hard to estimate their pattern, we used NN model. The estimated models were compared with correlations between output indexes of SQ and hearing test results for verification data 'Pleasant'. As a result of application of the SQ indexes, the NN model was shown with the largest correlation of SQ indexes and we found possibilities to predict the SQ metrics.

Research for High Sound Quality for a Passenger Car (승용차의 고급감 음질에 대한 연구)

  • Kim, Tae-Gyu;Kim, Sung-Jong;Lee, Sang-Kwon;Park, Dong-Chul;Lee, Kyung-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1158-1166
    • /
    • 2009
  • Future luxury car must satisfy the improvement of the luxury sound quality on the vehicle interior noise. Previously, we have analyzed vehicle interior noise by dB(A) based analysis. However, dB(A) has very little to do with the psychological satisfaction of the consumers. People want a sound that is characteristic and refined not a sound that is quiet and common. Subjective test were conducted to determine the relationship between subject' s responses and calculated metric values. People choose the most luxury sound among the various vehicle interior noise. And the purpose of this study is that we understand the metrics which constitute the luxury vehicle sound. We have analyzed vehicle interior noise by using the statistical analysis such as multiple regression method and correlation method. And we organized the index of the luxury sound quality.

Sound Quality Evaluation of the Level D Noise for the vehicle using Mahalanobis Distance (Mahalanobis Distance 를 이용한 차량 D 단 소음의 음질 평가)

  • Park, Sang-Gil;Park, Won-Sik;Sim, Hyoun-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.311-317
    • /
    • 2007
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. The previous methods to evaluation of the SQ about vehicle interior noise are linear regression analysis of subjective SQ metrics by statistics and the estimation of the subjective SQ values by neural network. But these are so depended on jury test very much that they result in many difficulties. So, to reduce jury test weight, we suggested a new method using Mahalanobis distance for SQ evaluation. And, optimal characteristic values influenced on the result of the SQ evaluation were derived by signal to noise ratio(SN ratio) of the Taguchi method. Finally, the new method to evaluate SQ is constructed using Mahalanobis-Taguchi system(MTS). Furthermore, the MTS method for SQ evaluation was compared by the result of SQ grade table at the previous study and their virtues and faults introduced.

  • PDF

Sound Quality Evaluation and Grade Construction of the Level D Noise for the Vehicle Using MTS (MTS기법을 이용한 차량 D단 소음의 음질 평가 및 음질 등급화 구축)

  • Park, Sang-Gil;Park, Won-Sik;Sim, Hyoun-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.393-399
    • /
    • 2008
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. The previous methods to evaluation of the SQ about vehicle interior noise are linear regression analysis of subjective SQ metrics by statistics and the estimation of the subjective SQ values by neural network. But these are so depended on jury test very much that they result in many difficulties. So, to reduce jury test weight, we suggested a new method using Mahalanobis distance for SQ evaluation. And, optimal characteristic values influenced on the result of the SQ evaluation were derived by signal to noise ratio(SN ratio) of the Taguchi method. Finally, the new method to evaluate SQ is constructed using Mahalanobis-Taguchi system(MTS). Furthermore, the MTS method for SQ evaluation was compared by the result of SQ grade table at the previous study and their virtues and faults introduced.