• Title/Summary/Keyword: Submerged time

Search Result 385, Processing Time 0.029 seconds

Optimization of submerged culture conditions for roridin E production from the poisonous mushroom Podostroma cornu-damae

  • Lee, Dong Hwan;Ha, Si Young;Jung, Ji Young;Yang, Jae-Kyung
    • Journal of Mushroom
    • /
    • v.19 no.2
    • /
    • pp.81-87
    • /
    • 2021
  • Roridin E, produced by Podostroma cornu-damae, is a mycotoxin with anticancer activity. To increase the content of roridin E, submerged culture conditions were optimized using response surface methodology. Three factors, namely, medium initial pH, incubation time and agitation speed were optimized using a Box-Behnken design. The optimum submerged culture conditions to increase the content of roridin E included a medium with an initial pH of 4.0, an incubation time of 12.90 days, and an agitation speed of 63.03 rpm. The roridin E content in the submerged culture, under the aforementioned conditions, was 40.26 mg/L. The findings of this study can help lower the current price of roridin E and promote its related research.

Flood Submerged Area Mapping Using the Integration of SAR /TM Images

  • Xinglian, Qiu;Jincun, zhang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.287-290
    • /
    • 2002
  • Real-time flood submerged area map provides important scientific basis for the decision-making of flood control and relieving disaster. Taking the Wuhan area as an example, this article gives out a image interpretation method under influence of flood, and describes real-time or quasi-real-time flood submerged area map by using the integration of ERS-2 SAR image and LANDSAT TM image in support of remote sensing images process software ERDAS.

  • PDF

Catch characteristics of shrimp trap by submerged time (새우 통발의 침지시간에 따른 어획 특성)

  • Bae, Bong-Seong;An, Heui-Chun;Park, Seong-Wook;Park, Hae-Hoon;Chun, Young-Yull
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.4
    • /
    • pp.201-210
    • /
    • 2009
  • Cast fishing gear needs some time for fishing progress, and catches and their composition by submerged time can change by several cause. Therefore, it is very importance to study fishing capacity of fishing gear by submerged time. This study is to investigate catches and their composition of shrimp trap, that is used in the coastal of the East Sea, and to find the fittest lifting time of trap. Experimental term are September 2006 and August 2007, the location is the coastal of Oho, Goseong, Gangwondo, Korea and one hundred trap is used at each casting and lifting of gear. For convenience of description, survey of 2006 and 2007 are dented as experimental code 1 and 2, and submerged time 21hr, 43hr and 66hr are dented as code A, B and C. The result of obtained from the above approach are summarized as follows: Many Northern shrimps(Pandalus eous), dominated 96.36%, are only catched in experimental code A, and in code B and C, some of coonstripe shrimp(Pandalus hypsinotus) and few morotoge shrimp(Pandalopsis japonica) are catched. CPUE of code 1A, 1B and 1C per trap were 21.67g, 29.51g and 28.48g, and those of code 2A, 2B and 2C per trap were 25.44g, 32.93g and 33.36g. Therefore, 24.66% of catch increased according as submerged time passes from 1 day to 2 days, and almost no change of catch was to be -1.1%. Carapace length of code 1A, 1B and 1C were 23.77mm, 25.00mm and 25.57mm, and those of code 2A, 2B and 2C per trap were 23.83mm, 24.95mm and 25.45mm. Thus, the more submerged time is, the less catch of small fish is and the more catch of large fish is. Consequently, fit lifting time of shrimp trap is after 2 days, and if considered trouble of fishing gear and condition of catch, the fittest lifting time is the third successive day of casting date.

Depth Control of a Submerged Body Near the Free Surface by LQR Control Method (LQR 제어 기법을 적용한 수면 근처에서의 수중운동체 심도 제어)

  • Kim, Dong-Jin;Rhee, Key-Pyo;Choi, Jin-Woo;Lee, Sung-Kyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.382-390
    • /
    • 2009
  • The submerged body near the free surface is disturbed by the 1st and 2nd order wave forces, which results in unstable movements when no control is applied. In this paper, the vertical motions of the submerged body are analyzed, and the time-variant nonlinear system for the vertical motions of the submerged body is transformed to the time-invariant linear system in state space. Next, depth controller of the submerged body is designed by using LQR control, one of the modern optimal control technique. Numerical simulation shows that effective depth controls can be achieved by LQR control.

Dynamic interaction analysis of submerged floating tunnel and vehicle (튜브형 수중교량의 교량-차량 동적상호작용 해석방법)

  • Kim, Moon-Young;Kwark, Jong-Won;Min, Dong-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.83-88
    • /
    • 2013
  • The purpose of this study is to develop the algorithm for dynamic interaction analysis of submerged floating tunnel and vehicles. The dynamic behavior characteristic of submerged floating tunnel is certainly different with general structures, because the submerged floating tunnel is floating in the middle of water, and subjected to constant buoyance. Therefore the analyses in various aspects should be carried out to secure structural stability and practicality of structures. To conduct the dynamic interaction analysis, the structure is modeled by commercial FEM program ABAQUS to investigate modal characteristic. Also the added mass concept is applied to represent the inertial force by a fluid, and then dynamic interaction analyses are conducted with superposition method when the KTX is moving along the submerged floating tunnel. And the time histories are presented for vertical and lateral displacement at the center of the tunnel.

  • PDF

Feasibility Study of Submerged Floating Tunnels Moored by an Inclined Tendon System

  • Won, Deokhee;Kim, Seungjun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1191-1199
    • /
    • 2018
  • Concepts of submerged floating tunnels (SFTs) for land connection have been continuously suggested and developed by several researchers and institutes. To maintain their predefined positions under various dynamic environmental loading conditions, the submerged floating tunnels should be effectively moored by reasonable mooring systems. With rational mooring systems, the design of SFTs should be confirmed to satisfy the structural safety, fatigue, and operability design criteria related to tunnel motion, internal forces, structural stresses, and the fatigue life of the main structural members. This paper presents a feasibility study of a submerged floating tunnel moored by an inclined tendon system. The basic structural concept was developed based on the concept of conventional cable-stayed bridges to minimize the seabed excavation, penetration, and anchoring work by applying tower-inclined tendon systems instead of conventional tendons with individual seabed anchors. To evaluate the structural performance of the new type of SFT, a hydrodynamic analysis was performed in the time domain using the commercial nonlinear finite element code ABAQUS-AQUA. For the main dynamic environmental loading condition, an irregular wave load was examined. A JONSWAP wave spectrum was used to generate a time-series wave-induced hydrodynamic load considering the specific significant wave height and peak period for predetermined wave conditions. By performing a time-domain hydrodynamic analysis on the submerged floating structure under irregular waves, the motional characteristics, structural stresses, and fatigue damage of the floating tunnel and mooring members were analyzed to evaluate the structural safety and fatigue performance. According to the analytical study, the suggested conceptual model for SFTs shows very good hydrodynamic structural performance. It can be concluded that the concept can be considered as a reasonable structural type of SFT.

Assessment of Water Piling-up behind a Submerged Breakwater during Storm Events (단기 태·폭풍 기인 잠제 배후의 Piling-up 현상 평가)

  • Son, Donghwi;Yoo, Jeseon;Kim, Mujong
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.203-210
    • /
    • 2018
  • It is generally known that submerged breakwaters can reduce the incoming wave energy without disturbing the beach scenery. However, a submerged breakwater is also able to cause a setup of the sea level in the protected area which is also called as water piling-up. Since the piling-up can result in longshore currents, sediment transports, and unexpected beach erosion, understanding about the piling-up process is required prior to designing the nearshore structures. In this study, the water piling-up behind a submerged breakwater is assessed in the time of storm events. For the study area, Anmok beach in Gyeonso-dong, Gangwon-do is selected. 1-year, 5-year, 10-year, and 50-year return-values were derived from Peaks-Over-Threshold(POT) method and those are applied as offshore boundary conditions for the numerical simulation. The numerical results of the piling-up were assessed with regard to the wave steepness and the height of the submerged breakwater. With increase of both significant wave height and the height of the submerged breakwater, the piling-up parameter is also increased which can lead to erosion of dry beach behind the structure.

Estimation of reaction forces at the seabed anchor of the submerged floating tunnel using structural pattern recognition

  • Seongi Min;Kiwon Jeong;Yunwoo Lee;Donghwi Jung;Seungjun Kim
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.405-417
    • /
    • 2023
  • The submerged floating tunnel (SFT) is tethered by mooring lines anchored to the seabed, therefore, the structural integrity of the anchor should be sensitively managed. Despite their importance, reaction forces cannot be simply measured by attaching sensors or load cells because of the structural and environmental characteristics of the submerged structure. Therefore, we propose an effective method for estimating the reaction forces at the seabed anchor of a submerged floating tunnel using a structural pattern model. First, a structural pattern model is established to use the correlation between tunnel motion and anchor reactions via a deep learning algorithm. Once the pattern model is established, it is directly used to estimate the reaction forces by inputting the tunnel motion data, which can be directly measured inside the tunnel. Because the sequential characteristics of responses in the time domain should be considered, the long short-term memory (LSTM) algorithm is mainly used to recognize structural behavioral patterns. Using hydrodynamics-based simulations, big data on the structural behavior of the SFT under various waves were generated, and the prepared datasets were used to validate the proposed method. The simulation-based validation results clearly show that the proposed method can precisely estimate time-series reactions using only acceleration data. In addition to real-time structural health monitoring, the proposed method can be useful for forensics when an unexpected accident or failure is related to the seabed anchors of the SFT.

Real time implementation of the auto depth control system for a submerged body (수중운동체 자동심도제어 시스템의 실시간 구현)

  • 이동익;조현진;최중락;이동권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.633-636
    • /
    • 1991
  • This paper describes the auto depth control system for underwater vehicle that can be used for both near surface and deeply submerged depthkeeping operations. This controller uses the fuzzy control algorithm and is implemented on the 16 bit microprocessor 8086 and coprocessor 8087. For verifying this system design, the digital simulator using PC-386 based T800 transputer is proto-totyped and the real time simulations show us satisfactory results.

  • PDF

Development of Submerged Membrane Bioreactor for Biological Nutrient Removal on Municipal Wastewater and Analyzing the Effect of Chemical Cleaning on Microbial Activity (도시 하수에서의 생물학적 고도처리를 위한 MBR공정 개발 및 화학세정에 의한 미생물 활성도 영향 분석)

  • Park, Jong-Bu;Park, Seung-Kook;Hur, Hyung-Woo;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.120-124
    • /
    • 2009
  • This study was performed to investigate the application of submerged membrane bioreactor (MBR) system for biological nutrient removal of municipal wastewater. MBR bioreactor consists of four reactors such as anaerobic, stabilization, anoxic and submerged membrane aerobic reactors with two internal recycles. The hydraulic retention time (HRT), sludge retention time (SRT) and flux were 6.2 hr, 34.1 days and $19.6L/m^2/hr$ (LMH), respectively. As a result of operation, the removal efficiency of $COD_{Cr}$, SS, TN and TP were 94.3%, 99.9%, 69.4%, and 74.6%, respectively. There was no significant effect of microbial activity after the maintenance cleaning using 200 mg/L of NaOCl. Membrane filtration for the treatment of municipal wastewater was performed for longer than 9 months without chemical recovery cleaning.