• Title/Summary/Keyword: Super juction

Search Result 5, Processing Time 0.022 seconds

Study on Latch Up Characteristics of Super Junction MOSFET According to Trench Etch Angle (Trench 식각각도에 따른 Super Juction MOSFET의 래치 업 특성에 관한 연구)

  • Chung, Hun Suk;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.551-554
    • /
    • 2014
  • This paper was showed latch up characteristics of super junction power MOSFET by parasitic thyristor according to trench etch angle. As a result of research, if trench etch angle of super junction MOSFET is larger, we obtained large latch up voltage. When trench etch angle was $90^{\circ}$, latch up voltage was more 50 V. and we got 700 V breakdown voltage. But we analyzed on resistance. if trench etch angle of super junction MOSFET is larger, we obtained high on resistance. Therefore, we need optimal point by simulation and experiment for solution of trade off.

Optimal Process Design of Super Junction MOSFET (Super Juction MOSFET의 공정 설계 최적화에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.501-504
    • /
    • 2014
  • This paper was developed and described core-process to implement low on resistance which was the most important characteristics of SJ (super junction) MOSFET. Firstly, using process-simulation, SJ MOSFET optimal structure was set and developed its process flow chart by repeated simulation. Following process flow, gate level process was performed. And source and drain level process was similar to genral planar MOSFET, so the process was the same as the general planar MOSFET. And then to develop deep trench process which was main process of the whole process, after finishing photo mask process, we developed deep trench process. We expected that developed process was necessary to develop SJ MOSFET for automobile semiconductor.

Thermal Characteristics according to Trench Etch angle of Super Junction MOSFET (Super Junction MOSFET의 트렌치 식각 각도에 따른 열 특성 분석에 관한 연구)

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.532-535
    • /
    • 2014
  • This paper analyzed thermal characteristics of super junction MOSFET using process and design parameters. Trench process is very important to super junction MOSFET process. We analyzed the difference of temperature, thermal resistance, total power consumption according to trench etch angle. As a result we obtained minimum value of temperature difference and thermal resistance at $89.3^{\circ}$ of trench etch angle. The electrical characteristics distribution of super junction MOSFET is not showed tendency according to trench etch angle. We need iterative experiments and simulation for optimal value of electrical characteristics. The super junction power MOSFET that has superior thermal characteristics will use automobile and industry.

The Electrical Characteristics of Power FET using Super Junction for Advance Power Modules

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.360-364
    • /
    • 2013
  • The maximum breakdown voltage's characteristic within the Super Junction MOSFET structure comes from N-Drift and P-Pillar's charge balance. By developing P-Pillar from Planar MOSFET, it was confirmed that the breakdown voltage is improved through charge balance, and by setting the gate voltage at 10V, the characteristic comparisons of Planar MOSFET and Super Junction MOSFET are shown in picture 6. The results show that it had the same breakdown voltage as Planar MOSFET which increased temperature resistance by 87.4% at $.019{\Omega}cm^2$ which shows that by the temperature resistance increasing, the power module's power dissipation improved.

Electrical Characteristics of Super Junction MOSFET According to Trench Etch Angle of P-pillar (P-pillar 식각 각도에 따른 Super Junction MOSFET의 전기적 특성 분석에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.497-500
    • /
    • 2014
  • In this paper, we analyze electrical characteristics of n/p-pillar layer according to trench angle which is the most important characteristics of SJ MOSFET and core process. Because research target is 600 V class SJ MOSFET, so conclusively trench angle deduced 89.5 degree to implement the breakdown voltage 750 V with 30% margin rate. we found that on resistance is $22mohm{\cdot}cm^2$ and threshold voltage is 3.5 V. Moreover, depletion layer of electric field distribution also uniformly distributes.