• Title/Summary/Keyword: Superconducting fault current limiter

Search Result 492, Processing Time 0.038 seconds

The manufacture and characteristic experiment of 220Vrms/100Apeak class superconducting fault current limiter (220rms/100Apeak급 초전도 사고전류제한기의 제작 및 특성실험)

  • 이상진;배준한;오윤상;고태국
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.14-17
    • /
    • 1996
  • We analyzed the characteristics of a power system with superconducting fault current limiter and showed the possibility of the application of a superconducting fault current limiter to a real power system through manufacturing of and experiment about 220Vrms/100Apeak class superconducting fault current limiter. We experimentally confirmed that the overvoltage of superconducting fault current limiter increased as the rate of current sharing to the limiting coil grew. The fault current could be limited within a few milliseconds when it was applied to a power system in series. Therefore, we could confirm that superconducting fault current limiter was effective in protection of a substation or power plant at short-circuit fault. (author). 7 refs., 7 figs., 2 tabs.

  • PDF

Modeling of Hybrid Superconducting Fault Current Limiter(HSFCL) using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 하이브리드 초전도 전류제한기 모델링)

  • Ahn, Jae-Min;Kim, Jin-Seok;Moon, Jong-Fil;Lim, Sung-Hun;Kim, Jae-Chul;Hyun, Ok-Bae
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.46-48
    • /
    • 2008
  • The increase of fault current due to large demand has caused the capacity of power machines in power grid to increase. To protect the power system effectively from the large fault current, several superconducting fault current limiters have been proposed. however, in order to apply superconducting fault current limiters into power system, there are many problems such as cost, recovery, AC loss, and cryogenic. In order to solve these problems, hybrid superconducting fault current limiter(HSFCL) was proposed. In this paper, we modeled hybrid superconducting fault current limiter using PSCAD/EMTDC and analyed fault current limiting characteristic and total resistance of hybrid superconducting fault current limiter.

  • PDF

The Stability Analysis of Power System Installed Superconducting Fault Current Limiter (고온 초전도 한류기가 설치된 전력 시스템의 안정도 해석)

  • Lee, Seung-Je;Lee, Chan-Ju;Go, Tae-Guk
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.5
    • /
    • pp.227-232
    • /
    • 1999
  • The stability of Power system installed Hi-Tc Superconducting Fault Current Limiter(SFCL) is analyzed as a process of developing SFCL. For investigation, a simple mimic system(only one generator) is assumed and then the circuit with SFCL in that system is solved for transient performance. In case the SFCL is installed in the power system, it protected synchronization more effectively both in symmetrical 3-phase fault and single phase line to ground fault in that the machine remains in synchronism for the more time than of without superconducting fault current limiter. It shows that the superconducting fault current limiter not only limits fault current but also protest synchronism. So for design of this SFCL, its synchronism protection property must be considered.

  • PDF

Characteristics of a FCL Applying Fast Interrupter According to the Current Limitation Elements (고속 인터럽터를 적용한 한류기의 전류제한요소에 따른 특성)

  • Im, In-Gyu;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1752-1757
    • /
    • 2012
  • With the development in industry, power demand has increased rapidly. As consumption of power has increased, Demand for new power line and electric capacity has risen. However, in the event of fault, problems occur in extending the range of fault coverage and increasing fault current. In these reasons, protection devise is recognized as the prevention of an accident and fault current. This paper dealt with minimizing fault propagation and limiting fault current by adjusting fault current limiter (FCL) with fast interrupter. At this point, we compared and analyzed characteristics between non-inductive resistance and fault current which is limited by superconducting units. In normal state of the power system, power was supplied to the load, but when fault occurred, the interrupter was operated as CT which detected the over-current. Its operation made the limitation of fault current through a FCL. We concluded that the limiter using superconducting units was more efficient with the increase of power voltage. Superconducting fault current limiter with the fast interrupter prevented the spread of a fault, and improved reliability of power system.

A Study on the Effect of Superconducting Fault Current Limiter in Power System with Separated Bus and Superconducting Fault Current Limiter (모선 분리 운영중인 전력계통에 초전도 한류기 적용 효과 및 영향에 관한 연구)

  • Kim, Myong-Hyon;Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.74-79
    • /
    • 2012
  • Currently, separated buses were increased to limit a fault currents in power transmission system. However, separated buses caused bad influences such as a decrease of reliability and stability. Superconducting fault current limiter (SFCL) was proposed to limit a fault current lately and that has many merits beside any other solutions. Therefore, we proposed the install of Superconducting fault current limiter (SFCL) in power transmission system with separated bus. And our proposal was verified by reliability of power system.

Hybrid Type Superconducting Fault Current Limiter Modeling using EMTP (EMTP를 이용한 Hybrid Type Superconducting Fault Current Limiter)

  • Park, Se-Ho;Rhee, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.172-174
    • /
    • 2008
  • A fault current limitation using fault current limiter(FCL) is very important for power system operation. In recent year, a number of research have been performed and still Progressing about the super conducting fault current limiter(SFCL), To protect the power system effectively from the large fault current, several superconducting fault current limiters proposed. However, there are many problem such as cost, recovery and ac loss. To solve these problems, hybrid superconducting fault current limiter(HSFCL) have been proposed. In this paper, HSFCL are modeled using (Electro Magnetic Transient Program - Restructured Version) EMTP-RV.

  • PDF

Analysis on the Protective Coordination with Hybrid Superconducting Fault Current Limiter (반주기 이후 동작 하이브리드 초전도 전류제한기와 보호기기 협조 분석)

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul;Choi, Jong-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1832-1837
    • /
    • 2011
  • The fault current has increased due to the large power demand in power distribution system and network distribution system. To protect the power system effectively from the increased fault current, the superconducting fault current limiter (SFCL) has been notified. However, the conventional SFCL has some problems such as cost, operation, recovery, loss. To solve some problems, the hybrid superconducting fault current limiter using the fast switch was proposed. However, hybrid SFCL also has a problem that is protection coordination in power distribution system with hybrid SFCL. In this paper, the fault current limiting characteristics of hybrid SFCL with first half cycle non-limiting operation according to the fault angle, the resistance of superconducting element, and the magnitude of Current Limit Resistor (CLR) which are the components of hybrid SFCL were analyzed through the experiments.

Operation characteristics of a fault current limiter by high speed interrupter and a superconducting element

  • Im, I.G.;Jung, I.S.;Choi, H.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.10-14
    • /
    • 2014
  • Due to continuous increase of electric power consumption, couple of resolutions for improving accuracy in power system like line separation are being studied. The increase of the power demand can cause problems such as supply difficulties of the electricity and broadband outages, failure, etc. When a fault occurs in the power system, a fault current also increases. Fault current creates problems like reduction of lifespan and failure on the power system. In order to resolve these problems, the reduction of initial fault current using the characteristics of superconducting element was applied to fault current limiter. We applied the system to high speed fault current limiter. We found that the superconducting element effectively reduced initial fault current and the fault current was limited by changing operation of high speed interrupter.

A Study on Characteristics of Flux-offset-type Fault Current limiter according to Initial fault current

  • Jung, Byungik;Hwang, Junwon;Choi, Hyosang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.117-122
    • /
    • 2015
  • Our research team proposed a flux-offset type fault current limiter as a new limiter. The flux-offset type fault current limiter uses a fault current limit technology based on the flux offset principle of the primary and secondary windings of a transformer. Stable fault current limit characteristics were achieved through a preliminary study. However, it was discovered that the initial fault current was not limited. Therefore, in this paper, a high-speed interrupter and a superconducting element were separately applied to the secondary winding of the flux-offset type fault current limiter and the operating characteristics were comparatively analyzed. In the experiment, when the superconducting element was applied to the secondary winding of the transformer, the initial fault current was limited while the limitation in the operation time was further shortened.

The Computer Simulation on the Characteristics of the Non-Inductive Superconducting Fault Current Limiter (무유도성 초전도전류제한기의 특성 해석 및 컴퓨터 시뮬레이션)

  • 주민석;이상진;오윤상;고태국
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1050-1060
    • /
    • 1994
  • This paper is a study on the computer simulation of the characteristics of the superconducting fault current limiter. Input variable parameters are apparent power, load resistance value, line resistance value and so on. Initial fault current 2 times larger than the trigger current is required to reduce the switching time of SFCL. The propagation velocity increases abruptly, the transport current is several times larger than the ciritical current. In this paper, the switching time is calculated to be 323$\mu$ sec, and the initial fault current is 19 times larger than the critical current. Because the trigger coils are bifilar winding, they have little impedance in superconducting state. After fault occurred, the limiting coil acts as a superconducting reactor and the trigger coils quench at a critical current. Without the SFCL in the circuit, fault current after the load impedence is shorted might be increased to 1100A. The fault current is, therefore, successfully limited by the superconducting limiting coil to 100A determined by the coil inductance.

  • PDF