• Title/Summary/Keyword: Supercritical Hydrocarbon

Search Result 33, Processing Time 0.031 seconds

Visualization of Supercritical Mixed Hydrocarbon-Fuel Droplet (혼합 탄화수소계 초임계 상태 연료의 액적 거동 가시화)

  • Song, Juyeon;Song, Wooseok;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.711-716
    • /
    • 2020
  • Injection visualization of heated mixed simulant droplets based on hydrocarbon fuel was performed under supercritical state environment. Mixed simulant consisted of Decane and Methylcyclohexane with different critical pressure and critical temperature. Flows injected into the supercritical state environment created droplet by Rayleigh breakup mechanism, and the Oh number and Re number were determined to confirm the breakup area. The temperature of the mixed simulant varied from Tr=0.49 to Tr=1.34. The flow rate was maintained at 0.7 to 0.8 g/s. Droplet became shorter in breakup length as heated and into a lumped form. Second droplet was formed and when Tr=1.34, the phase was not visible in the supercritical state with local unsteady flow.

Influence of Critical Point of Hydrocarbon Jet Injected into Near-Critical Environment on Injection Behavior (근임계 환경으로 분사되는 탄화수소 제트의 임계점이 분사거동에 미치는 영향)

  • Yoon, Taekyung;Shin, Dongsoo;Lee, Keonwoong;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.32-39
    • /
    • 2018
  • Supercritical injection behavior of liquid hydrocarbon compounds, which are used as main components of propellant fuel, was analyzed. Decane and Methylcyclohexane (MCH) with different critical points were selected as experimental fluid and Shadowgraphy technique was used. Decane and MCH behave differently in the initial state under the subcritical condition. However, near the critical point, the enthalpy of evaporation became close to 0, so that phase change into supercritical fluid occurred, not vaporization process, and no breakup of both fluids occurred.

Research Activities and Directions of Turbulent Combustion and Hydrocarbon Fuels in Scramjet Engine (스크램제트 엔진의 난류 연소 및 탄화수소 연료 연구 및 방향)

  • Choi, J.Y.;Parent, Bernard;Won, S.H.;Lee, S.H.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.330-333
    • /
    • 2008
  • Present paper introduces the research activities on fuel-air mixing and combustion of supersonic turbulent flows in scramjet combustor carried out in Aerospace Combustion and Propulsion Laboratory of the department of Aerospace Engineering of the Pusan national University. Also, an introduction will be given to the characteristics of the supercritical hydrocarbon fuel combustion in a practical scramjet engine and its numerical modeling approaches.

  • PDF

Analysis of Endothermic Regenerative Cooling Technologies by Using Hydrocarbon Aviation Fuels (탄화수소 항공유를 이용한 흡열재생냉각 기술분석)

  • Lee, Hyung Ju
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.113-126
    • /
    • 2021
  • In order to develop active cooling systems for a hypersonic cruise vehicle, a series of studies need to be preceded on regenerative cooling technologies by using endothermic reaction of liquid hydrocarbon aviation fuels. Among them, it is essential to scrutinize fluid flow/heat transfer/endothermic pyrolysis characteristics of supercritical hydrocarbons in a micro-channel, as well as to acquire thermophysical properties of hydrocarbon fuels in a wide range of temperature and pressure conditions. This study, therefore, reviewed those technologies and analyzed major findings in related research areas which have been carried out worldwide for the development of efficient operational regenerative cooling systems of a hypersonic flight vehicle.

Synthesis of Polymers in Supercritical Carbon Dioxide (초임계 유체를 이용한 고분자 합성 연구)

  • Lee, Hyun-Suk;Kim, Jin-Woong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.1
    • /
    • pp.17-32
    • /
    • 2010
  • This review shows the design and the development of new $CO_2$-soluble hydrocarbon copolymers which can be used as effective stabilizers for successful dispersion polymerizations of bio-compatible materials in supercritical carbon dioxide ($scCO_2$). The basic concepts of supercritical fluid including its solvent properties and applications in polymer synthesis are described. We report the facile synthesis of highly soluble hydrocarbon based copolymers, prepared with good control via controlled free radical polymerization from readily accessible and commercially available monomers. The phase behaviour of these materials was monitored in pure $CO_2$ to investigate how the molecular weights and the composition of the copolymers affect their solubility in $CO_2$. Their activity as a stabilizer was then tested in dispersion polymerization of N-vinyl pyrrolidone in $CO_2$ at various reaction conditions to identify the key parameters required for a successful dispersion stabilization of growing PVP particles. Some prospective potentials of this research which can be applied in developing new polymer materials in an environmentally-friendly fashion for use in cosmetics are also discussed.

Visualization of Doublet Impinging Jet Spray in Supercritical Mixed Hydrocarbon Fluid (초임계 탄화수소계열 혼합유체의 이중 충돌 제트 분무 가시화)

  • Song, Juyeon;Choi, Myeung Hwan;An, Jeongwoo;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.53-58
    • /
    • 2021
  • Based on surrogate model, a hydrocarbon mixture was analyzed by visualizing the impinging break up mechanism in subcritical and supercritical conditions. Decane and methylcyclohexane with different critical pressures and temperatures were selected as experimental fluids. The impinging injector was installed inside the chamber, and the spray was visualized through a speed camera in subcritical and supercritical conditions. The injection condition of the mixture and chamber was kept constant at Pr(P/Pc) = 1, and Tr(T/Tc) was increased from 0.48 to 1.02. As Tr increased, the spray angle increased, and the sheet length decreased as the properties of the mixture reached each critical point. In addition, when the mixture approached the near critical point, it was shown that the change in density gradient was largely observed out of the impinging break up mechanism.

A Numerical Study of Combustion Characteristics of Hydrocarbon Fuel Droplet (탄화수소 연료 액적의 연소 특성에 관한 수치해석)

  • Lee, Bong-Su;Lee, Kyung-Jae;Kim, Jong-Hyun;Koo, Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1595-1603
    • /
    • 2003
  • Droplet combustion at high ambient pressures is studied numerically by formulating one dimensional combustion model in the mixture of n-heptane fuel and air. The ambient pressure is supercritical conditions. The modified Soave-Redlich-Kwong state equation is used in the evaluation of thermophysical properties to account for the real gas effect on fluid p-v-T properties in high pressure conditions. Non-ideal thermodynamic and transport property at near critical and supercritical conditions are also considered. Several parametric studies are performed by changing ambient pressure and initial droplet diameter. Droplet lifetime decreased with increasing pressure. Surface temperature increased with increasing pressure. Ignition time increased with increasing initial droplet diameter. Temporal or spatial distribution of mass fraction, mass diffusivity, Lewis number, thermal conductivity, and specific heat were presented.

Influence of Critical Point of Jet Injected into Near-Critical Environment on Phase Change (근임계 환경으로 분사되는 제트의 임계점이 상변화에 미치는 영향)

  • Yoon, Taekyung;Shin, Dongsoo;Son, Min;Shin, Bongchul;Koo, Jaye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.475-481
    • /
    • 2017
  • In this paper, high speed camera images were used to analyze the supercritical injection behavior of liquid hydrocarbon compounds used as main components of propellant fuel. Decane and Methylcyclohexane (MCH), which have different critical points among kerosene constituents, were selected as experimental fluid and Shadowgraphy technique was used for the analysis. The difference in the temperature variation from the initial injector state of the subcritical condition until the vaporization occurs was represented by the different behaviors of Decane and MCH. However, under the Supercritical conditions, the enthalpy of vaporization near the critical point approaches zero and the phase change to the Supercritical phase occurs instead of vaporization process. In the phase change of the Supercritical system, there was no rapid density change, so the liquid state image was observed in both the Decane and MCH.

  • PDF

Macroscopic Analysis on Supercritical Transition of Liquid Hydrocarbon Fuel (액체탄화수소의 초임계 천이과정에 대한 거시적 특성 분석)

  • Shin, Bongchul;Kim, Dohun;Son, Min;Lee, Keunwoong;Song, Wooseok;Koo, Jaye;Kwon, Oh Chae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.26-33
    • /
    • 2016
  • In order to analyze supercritical transition of liquid hydrocarbon fuel which used propulsion engine, visualization of phase changing using Methylcyclohexane (MCH) was performed. Also, measurements of temperature and pressure were conducted to obtain saturation lines of MCH and Decane. delayed increase of the pressure existed near the critical point due to dramatical increase of specific heats and the critical opalescence was only observed from the end point of delaying to the critical point. Beyond the critical point, the boundary between phases disappeared and the strong density gradient was observed. As the comparison between experimental and numerical saturation lines, the numerical estimation for mixture had relatively little difference while the results of pure components had almost coincidence.