• Title/Summary/Keyword: Surface Crack

검색결과 1,986건 처리시간 0.036초

파면거칠기 유도 균열닫힘에 의한 혼합모드 피로균열의 전파거동 및 파면에 대한 평가 (Assessment for Propagation Behavior and Fracture Surface of Mixed-mode Fatigue Crack by Fracture Surface-Roughness Induced Crack Closure)

  • 서기정;이정무
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.432-440
    • /
    • 2007
  • In this study, we have investigated the closure behavior of fatigue cracks in SAPH440 steel plates under a mixed-mode I+II loading. A crack image capturing system as a direct measuring method was used to measure the closure levels at a crack tip. The crack closure levels in the fluctuation and stable sections were increased with the increase of the mode mixture ratio. The mode mixture ratio independent fatigue crack propagation rates equation was calculated by considering mixed-mode crack closure levels. The equation was examined according to the application method of crack opening ratio. The fracture surface analysis by C-scan method was also performed in order to investigate the closure mechanism and propagation mode of crack under the mixed-mode I+II loading. The crack closure under the mixed mode I+II is confirmed as a surface roughness closure by the quantitative analysis of fracture surface using the proposed surface roughness parameter.

An analysis of an elastic solid incorporating a crack under the influences of surface effects in plane & anti-plane deformations

  • Kim, Chun Il
    • Interaction and multiscale mechanics
    • /
    • 제4권2호
    • /
    • pp.123-137
    • /
    • 2011
  • We review a series of crack problems arising in the general deformations of a linearly elastic solid (Mode-I, Mode-II and Mode-III crack) and, perhaps more significantly, when the contribution of surface effects are taken into account. The surface mechanics are incorporated using the continuum based surface/interface model of Gurtin and Murdoch. We show that the deformations of an elastic solid containing a single crack can be decoupled into in-plane (Mode-I and Mode-II crack) and anti-plane (Mode-III crack) parts, even when the surface mechanics is introduced. In particular, it is shown that, in contrast to classical fracture mechanics (where surface effects are neglected), the incorporation of surface elasticity leads to the more accurate description of a finite stress at the crack tip. In addition, the corresponding stress fields exhibit strong dependency on the size of crack.

혼합모드 하중 하에서의 균열성장 중 피로파단면 마찰과 균열닫힘효과의 상호관계 (The Correlation between Fatigue Fracture Crack Surface Friction and Crack Closure Effect in Crack Growth under Mixed-mode loading)

  • 서기정;송삼홍;이정무
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.214-219
    • /
    • 2004
  • Crack tip behavior of single mode loading condition(mode I)depend on tensile loading component but one of mixed mode loading condition(mode I+II) have influenced on shear loading component like the practical structure. Because crack closure is caused by shear loading component under mixed-mode loading a research on the behavior in the stage of crack initiation and propagation require to be evaluate about crack closure effect by fatigue crack surface friction. For that reasion we examined the behavior at the crack tip by direct measuring method. Measured behavior at the crack tip was analyzed through vector crack tip displacement. As a result, crack propafation equation was corrected by considering with crack closure effect. In addition we compared fatigue fracture crack surface and crack closure level.

  • PDF

압력용기 소재에서의 표면균열의 피로균열 성장특성에 관한 연구 (A Study on Fatigue Crack Growth Characterization Of Surface Crack In Pressure Vessel Materials)

  • 허용학;이주진;한지원;김종집;문한규
    • 대한기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.96-102
    • /
    • 1990
  • 본 연구에서는 압력용기 소재인 SPV 50Q와 고압강관 소재로 사용하는 SPV 50Q 와 고압강간 소재로 사용하는 API 5A-K55에서의 표면균열의 표면방향과 깊이방향 또한 두께 평균에 대한 균열열림을 스트레인 게이지와 CMOD(Crack Mouth Opening Displace- ment)게이지를 이용하여 측정 비교하였다. 또한 표면균열의 균열 열림하중을 측정위 치에 따라 평가하고, 본연구에 사용한 두 소재에 대해 균열 열림을 고려한 표면균열 진전평가가 각 방향에 대해 이루어졌다.

축하중을 받는 초기 반원 표면피로균열의 진전거동 예측 (Prediction of Growth Behavior of Initially Semicircular Surface Cracks under Axial Loading)

  • 김종한;송지호
    • 대한기계학회논문집
    • /
    • 제16권8호
    • /
    • pp.1536-1544
    • /
    • 1992
  • 본 연구에서는 축하중 부하의 경우 위에서 언급한 표면균열의 진전특성에 대 한 저자들의 연구결과를 이용하면 비교적 간단하게 표면 균열의 진전거동을 예측할 수 있으리라 기대되어 균열진전거동 예측 방법을 제시하고 이 방법의 타당성을 검토하였 다.

Relationship between Pattern of Fatigue Crack Surface and Fatigue Crack Growth Behavior under $K_{III}$ Mode-Four Point Shear in Al 5083-O

  • Kim Gun-Ho;Won Young-Jun;Sakakur Keigo;Fujimot Takehiro;Nishioka Toshihisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.474-482
    • /
    • 2006
  • Generally almost all fatigue crack growth is affected by mode I. For this reason a study on mode I has concentrated in the field of fracture mechanics. However the fatigue crack initiation and growth in machines and structures usually occur in mixed mode loading. If there is any relationship between the cause of fracture in mixed mode loading and fracture surface, fracture surface pattern will be the main mean explaining reasons of fatigue fracture and obtaining further information about fracture process. In this paper low point shear-fatigue test with Aluminum alloy hi 5083-O is carried out from this prospect and then the mixed mode distribution of fracture surface is examined from the result after identifying the generation of fatigue crack surface pattern. It was found from the experimental results that the fatigue crack surface pattern and the fatigue crack shear direction are remarkably consistent. Furthermore It is possible that the analysis of distribution of mixed mode through the fatigue crack surface pattern.

Al 5083-O재에 있어서 $K_{III}$ 모드 4점 전단 하에서의 피로파단면 무늬와 피로균열진전거동의 관계 (Relationship between Pattern of Fatigue Crack Surface and Fatigue Crack Growth Behavior under $K_{III}$ Mode-Four Point Shear in Al 5083-O)

  • 김건호;원영준;케이코 사카쿠라;타케히로 후지모토;토시히사 니시오카
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.43-44
    • /
    • 2006
  • Generally almost all fatigue crack growth is affected by model. For this reason a study on model has concentrated in the field of fracture mechanics. However the fatigue crack initiation and growth in machines and structures usually occur in mixed mode loading. If there is any relationship between the cause of fracture in mixed mode loading and fracture surface, fracture surface pattern will be the main mean explaining reasons of fatigue fracture and obtaining further information about fracture process. In this paper four point shear-fatigue test with Aluminum alloy Al 5083-O is carried out from this prospect and then the mixed mode distribution of fracture surface is examined from the result after identifying the generation of fatigue crack surface pattern. It was found from the experimental results that the fatigue crack surface pattern and the fatigue crack shear direction are remarkably consistent. Furthermore It is possible that the analysis of distribution of mixed mode through the fatigue crack surface pattern.

  • PDF

균열 형상비 변화에 따른 단일표면파로균열의 성장특성과 수명예측 (Growth Characteristics and Life Prediction of Single Surface Fatigue Crack with the Variation of crack Configuration Ratios)

  • 서창민;서덕영;정정수
    • 한국해양공학회지
    • /
    • 제7권2호
    • /
    • pp.173-181
    • /
    • 1993
  • This work has been investigated the ralationship between single surface crack length and crack depth have influence on the fatigue life. The simulation based on experimental results of 2.25 Cr-1Mo steel at various crack configuration ratios has enabled successful prediction of fatigue life at room temperature. The effect of crack depth should be considered for predicting fatigue crack growth rates as well as that of surface crack length. It is also shwn that the crack growth mechanisms are in good agreement with expreimental data according to the interaction of crack length and crack depth.

  • PDF

ON CRACK INTERACTION EFFECTS OF IN-PLANE SURFACE CRACKS USING ELASTIC AND ELASTIC-PLASTIC FINITE ELEMENT ANALYSES

  • Kim, Jong-Min;Huh, Nam-Su
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.680-689
    • /
    • 2010
  • The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components.

절단 유리판의 표면결함에 관한 실험적 연구 (Experimental Study on the Surface Defects of Scribed Glass Sheets)

  • 김청균
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.332-337
    • /
    • 2008
  • This paper presents the surface defect analysis based on the experimental investigation of scribed glasses. The scribing process by a diamond wheel cutter is widely used as a reliable and inexpensive method for sizing of glass sheets. The wheel cutter generates a small median crack on the glass surface, which is then propagated through the glass thickness for complete separation. The surface contour patterns in which are formed during a scribing process are strongly related to wheel cutter parameters such as wheel tip surface finish, tip angle and wheel diameter, and cutting process parameters such as scribing pressure, speed and tooling technique. The scribed surface of a glass sheet provides normal Wallner lines, which represent regular median cracks and crack propagation in glass thickness, and abnormal surface roughness patterns. In this experimental study, normal and abnormal surface topographic patterns are classified based on the surface defect profiles of scribed glass sheets. A normal surface of a scribed glass sheet shows regular Wallner lines with deep median cracks. But some specimens of scribed glass sheets show that abnormal surface profiles of glass sheets in two pieces are represented by a chipping, irregular surface cracks in depth, edge cracks, and combined crack defects. These surface crack patterns are strongly related to easy breakage of the scribed glass imposed by external forces. Thus the scribed glass with abnormal crack patterns should be removed during a quality control process based on the surface defect classification method as demonstrated in this study.