• Title/Summary/Keyword: Surface Modeling

Search Result 2,234, Processing Time 0.029 seconds

Watershed-scale Hydrologic Modeling Considering a Detention Effect of Rice Paddy Fields using HSPF Surface-Ftable (논의 저류효과를 고려한 유역수문모델링 - HSPF Surface-Ftable의 적용 -)

  • Seong, Chounghyun;Oh, Chansung;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.41-54
    • /
    • 2018
  • A method to account a detention in a rice paddy field in hydrologic modeling was tested at plot and watershed scales. Hydrologic Simulation Program - Fortran (HSPF) and its one of surface runoff modeling method, i.e Surface-Ftable, were used to simulate a inundated condition in a rice paddy culture for a study plot and basins in Saemangeum watershed. Surface-Ftable in HSPF defines surface runoff ratio with respect to surface water depth in a pervious land segment, which can be implemented to the feature of water management in a rice paddy field. A Surface-Ftable for paddy fields in Saemangeum watershed was developed based on the study paddy field monitoring data from 2013 to 2014, and was applied to Jeonju-chun and Jeongeup-chun basins which comprise 12% and 22% of paddy fields in the basins, respectively. Four gaging stations were used to calibrate and validate the watershed models for the period of 2009 and 2013. Model performed 7.13% and 9.68% in PBIAS, and 0.94 and 0.90 in monthly NSE during model calibrations at Jeonju and Jeongeup stations, respectively, while the models were validated its applicability at Hyoja and Gongpyung stations. The comparison of results with and without considering detention effect of paddy fields confirmed the validity of the Surface-Ftable method in modeling watersheds containing rice paddy fields.

Interface design and implementation for Attribute Based $Modeling^{TM}$ surface design (Attribute Based $Modeling^{TM}$ surface 디자인을 위한 인터페이스 설계 및 구현)

  • Kim Jeong-Hwa;Park Hwa-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.1315-1318
    • /
    • 2006
  • 모형 설계와 도형의 생성은 점, 곡선, 기울기과 같은 특정 속성들의 정보로 만들어 진다. 도형을 생성할 때 곡면 조각, 움직이는 곡선과 점, 일반적인 곡선, 연속 혹은 닫힌 곡선, 빠른 계산들은 중요하게 생각 되는 모델링 개념이다. 이 논문에서는 Attribute Based $Modeling^{TM}(A-B\;Modeling^{TM})$ surface을 사용하여 디자인을 디자인할 때 필요한 Multi-sided patch의 설계와 인터페이스를 구현하고자 한다.

  • PDF

A Study on Unifying Topology and Numerical Accuracy in Geometric Modeling: Surface to Surface Intersections (토폴로지와 수치적 정확도를 통합한 기하모델링에 관한 연구: 곡면간 교차선)

  • Ko, Kwang-Hee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.344-353
    • /
    • 2007
  • In this paper, we address the problem of robust geometric modeling with emphasis on surface to surface intersections. We consider the topology and the numerical accuracy of an intersection curve to find the best approximation to the exact one. First, we perform the topological configuration of intersection curves, from which we determine the starting and ending points of each monotonic intersection curve segment along with its topological structure. Next, we trace each monotonic intersection curve segment using a validated ODE solver, which provides the error bounds containing the topological structure of the intersection curve and enclosing the exact root without a numerical instance. Then, we choose one approximation curve and adjust it within the bounds by minimizing an objective function measuring the errors from the exact one. Using this process, we can obtain an approximate intersection curve which considers the topology and the numerical accuracy for robust geometric modeling.

Image-Based Approach for Modeling 3D Shapes with Curved Surfaces (곡면을 포함하는 형상의 영상을 이용한 모델링)

  • Lee, Man-Hee;Park, In-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.38-48
    • /
    • 2007
  • In this paper, we propose an image-based method for modeling 3D objects with curved surfaces based on the NURBS (Non-Uniform Rational B-Splines) representation. Starting from a few calibrated images, the user specifies the corresponding curves by means of an interactive user interface. Then, the 3D curves are reconstructed using stereo reconstruction. In order to fit the curves easily using the interactive user interface, NURBS curves and surfaces are employed. The proposed surface modeling techniques include surface building methods such as bilinear surfaces, ruled surfaces, generalized cylinders, and surfaces of revolution. In addition to these methods, we also propose various advanced surface modeling techniques, including skinned surfaces, swept surfaces, and boundary patches. Based on these surface modeling techniques, it is possible to build various types of 3D shape models with textured curved surfaces without much effort. Also, it is possible to reconstruct more realistic surfaces by using proposed view-dependent texture acquisition algorithm. Constructed 3D shape model with curves and curved surfaces can be exported in VRML format, making it possible to be used in different 3D graphics softwares.

Surface Catalytic Recombination in Hypersonic Flow: A Review of the Numerical Methods (극초음속 유동에서의 표면 촉매 재결합: 수치해석적 기법 리뷰)

  • Ikhyun Kim;Yosheph Yang
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • This paper provides a general overview of surface catalytic recombination in hypersonic flow. The surface catalytic recombination phenomena is elaborated in terms of its general overview and numerical modeling associated with it. The general overview of the surface catalytic recombination phenomena describes the elementary surface reactions for the surface catalytic and the role of the surface catalytic recombination efficiency in the heat transfer determination. In the numerical modeling, the surface catalytic recombination is described based on the stagnation-point boundary layer analysis, and finite-rate surface reaction modeling. Throughout this overview manuscript, a general understanding of this phenomena is obtained and can be used as foundation for deeper application with the numerical computational fluid dynamics (CFD) flow solver to estimate the surface heat transfer in the hypersonic vehicles.

A Study on Abstraction and Understandings in Children's Learning of Surface Area with Mathematical Modeling Perspective (겉넓이 학습을 위한 수학적 모델링에서 나타난 추상화 과정 및 겉넓이 이해에 관한 연구)

  • Hong, Jee-Yun;Kim, Min-Kyeong
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.1
    • /
    • pp.43-64
    • /
    • 2011
  • The purpose of this study was to analyze the progress of children's abstraction and to investigate how elementary students understand through mathematical modeling approach in the sixth grader's learning of surface area. Each small group showed their own level on abstraction in mathematical modeling progress. The participants showed improvements in understanding regarding to surface area context.

  • PDF

Development of a Surface Modeling Kernel (곡면 모델링 커널 개발)

  • 전차수;구미정;박세형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.774-778
    • /
    • 1996
  • Developed in this research is a surface modeling kernel for various CAD/CAM applications. Its internal surface representations are rational parametric polynomials, which are generalizations of nonrational Bezier, Ferguson, Coons and NURBS surface, and are very fast in evaluation. The kernel is designed under the OOP concepts and coded in C++ on PCs. The present implementation of the kernel supports surface construction methods, such as point data interpolation, skinning, sweeping and blending. It also has NURBS conversion routines and offers the IGES and ZES format for geometric information exchange. It includes some geometric processing routines, such as surface/surface intersection, curve/surface intersection, curve projection and so forth. We are continuing to work with the kernel and eventually develop a B-Rep based solid modeler.

  • PDF

New Geometric modeling method: reconstruction of surface using Reverse Engineering techniques

  • Jihan Seo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.565-574
    • /
    • 1999
  • In reverse engineering area, it is rapidly developing reconstruction of surfaces from scanning or digitizing data, but geometric models of existing objects unavailable many industries. This paper describes new methodology of reverse engineering area, good strategies and important algorithms in reverse engineering area. Furthermore, proposing reconstruction of surface technique is presented. A method find base geometry and blending surface between them. Each based geometry is divided by triangular patch which are compared their normal vector for face grouping. Each group is categorized analytical surface such as a part of the cylinder, the sphere, the cone, and the plane that mean each based geometry surface. And then, each based geometry surface is implemented infinitive surface. Infinitive average surface's intersections are trimmed boundary representation model reconstruction. This method has several benefits such as the time efficiency and automatic functional modeling system in reverse engineering. Especially, it can be applied 3D scanner and 3D copier.

  • PDF

Modeling of Functional Surface using Modified B-spline (수정 B-spline을 이용한 기능성 곡면의 Modeling)

  • 황종대;정종윤;정윤교
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.156-163
    • /
    • 2003
  • This research presents modeling of a functional surface which is a constructed free-formed surface. The modeling introduced in this paper adopts modified B-spline that is utilizing approximating technique. The modified B-Spline is constructed with altered control vertices. It is applied to measure points on a surface of an impeller blade. This research builds a surface-modeler accepting inputs of measured points. Generation of cutter-paths for NC machining employs the model of the constructed surfaces. The machined surfaces which is generated in several cases are compared in the aspect of machining accuracy.

Steel Probing in Concrete Using Steel Corrosion Surface Measurement Method Modeling (철근부식 표면측정법 모델링을 통한 콘크리트 내 철근 탐사)

  • Rhim, Hong-Chul;Ma, Hyang-Hwa;Lee, Suk-Yong;Lee, Kun-Woo;Oh, Jin-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.153-158
    • /
    • 2009
  • Using non-invasive surface measurement method, the corrosion state of steel embedded inside concrete can be measured by placing four electrodes on the surface of concrete. Modeling of such measurements can provide valuable information as how interfacial impedance between corroded steel and surrounding concrete results in measured impedance on the concrete surface. In this paper, the modeling of surface measurement technique is used for the determination of the sensitivity of the measurements with respect to steel bar size embedded inside concrete and cover thickness. Modeling results indicated that steel bar sizes varied from D10 to D35 could be identified. Concrete cover thickness changes from 0.02 m to 0.1 m was also distinguished using the modeling scheme. The results confirm this modeling technique is capable of determining steel bar sizes and cover thickness, as well as simulating corrosion responses.