• Title/Summary/Keyword: Surface Modeling

Search Result 2,234, Processing Time 0.032 seconds

Interactive and Intuitive Physics-based Blending Surface Design for the Second Order Algebraic Implicit Surfaces

  • Park, Tae-Jung;Kam, Hyeong-Ryeol;Shin, Seung-Ho;Kim, Chang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.842-855
    • /
    • 2009
  • We present a physics-based blending method for the second order algebraic implicit surface. Unlike other traditional blending techniques, the proposed method avoids complex mathematical operations and unwanted artifacts like bulge, which have highly limited the application of the second order algebraic implicit surface as a modeling primitive in spite of lots of its excellent properties. Instead, the proposed method provides the designer with flexibility to control the shapes of the blending surface on interactive basis; the designer can check and design the shape of blending surfaces accurately by simply adjusting several physics parameter in real time, which was impossible in the traditional blending methods. In the later parts of this paper, several results are also presented.

  • PDF

Integration of Shell FEA with Geometric Modeling Based on NURBS Surface Representation (NURBS 곡면기반의 기하학적 모델링과 셀 유한요소해석의 연동)

  • Choi, Jin-Bok;Roh, Hee-Yuel;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.105-112
    • /
    • 2007
  • The linkage framework of geometric modeling based on NURBS(Non-Uniform Rational B-Spline) surface and shell finite analysis is developed in the present study. For this purpose, geometrically exact shell finite element is implemented. NURBS technology is employed to obtain the exact geometric quantities for the analysis. Especially, because NURBS is the most powerful and wide-spread method to represent general surfaces in the field of computer graphics and CAD(Computer Aided Design) industry, the direct computation of surface geometric quantities from the NURBS surface equation without approximation shows great potential for the integration between geometrically exact shell finite element and geometric modeling in the CAD systems. Some numerical examples are given to verify the performance and accuracy of the developed linkage framework. In additions, trimmed surfaces with some cutouts are considered for more practical applications.

Variational surface design under normal field guidance

  • Wu, Weidong;Yang, Xunnian
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.129-136
    • /
    • 2015
  • This paper proposes a novel method for shape design of a Bezier surface with given boundary curves. The surface is defined as the minimizer of an extended membrane functional or an extended thin plate functional under the guidance of a specified normal field together with an initial prescribed surface. For given boundary curves and the guiding normal field, the free coefficients of a Bezier surface are obtained by solving a linear system. Unlike previous PDE based surface modeling techniques which construct surfaces just from boundaries, our proposed method can be used to generate smooth and fair surfaces that even follow a specified normal field. Several interesting examples are given to demonstrate the applications of the proposed method in geometric modeling.

Geometrical Modeling for Hybrid 3-D Braided Composites (하이브리드 삼차원 브레이딩 복합재료의 기하학적 모델링)

  • 한문희;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.67-70
    • /
    • 2003
  • To develop an effective geometric modeling is essential in order that precise mechanical properties and the geometrical properties of the 3-D braided composites can be estimated. RVE(representative volume element) was adopted fur geometrical modeling. RVE consisted of IC(inner unit cell), ISUC(interior surface unit cell) and ESUC(exterior surface unit cell). The whole geometrical model fur hybrid 3-D braided composites was developed.

  • PDF

An algorithm for estimating surface normal from its boundary curves

  • Park, Jisoon;Kim, Taewon;Baek, Seung-Yeob;Lee, Kunwoo
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.67-72
    • /
    • 2015
  • Recently, along with the improvements of geometry modeling methods using sketch-based interface, there have been a lot of developments in research about generating surface model from 3D curves. However, surfacing a 3D curve network remains an ambiguous problem due to the lack of geometric information. In this paper, we propose a new algorithm for estimating the normal vectors of the 3D curves which accord closely with user intent. Bending energy is defined by utilizing RMF(Rotation-Minimizing Frame) of 3D curve, and we estimated this minimal energy frame as the one that accords design intent. The proposed algorithm is demonstrated with surface model creation of various curve networks. The algorithm of estimating geometric information in 3D curves which is proposed in this paper can be utilized to extract new information in the sketch-based modeling process. Also, a new framework of 3D modeling can be expected through the fusion between curve network and surface creating algorithm.

The Estimated Source of 2017 Pohang Earthquake Using Surface Deformation Modeling Based on Multi-Frequency InSAR Data

  • Fadhillah, Muhammad Fulki;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.57-67
    • /
    • 2021
  • An earthquake occurred on 17 November 2017 in Pohang, South Korea with a strength of 5.4 Mw. This is the second strongest earthquake recorded by local authorities since the equipment was first installed. In order to improve understanding of earthquakes and surface deformation, many studies have been conducted according to these phenomena. In this research, we will estimate the surface deformation using the Okada model equation. The SAR images of three satellites with different wavelengths (ALOS-2, Cosmo SkyMed and Sentinel-1) were used to produce the interferogram pairs. The interferogram is used as a reference for surface deformation changes by using Okada to determine the source of surface deformation that occurs during an earthquake. The Non-linear optimization (Levemberg-Marquadrt algorithm) and Monte Carlo restart was applied to optimize the fault parameter on modeling process. Based on the modeling results of each satellite data, the fault geometry is ~6 km length, ~2 km width and ~5 km depth. The root mean square error values in the surface deformation model results for Sentinel, CSK and ALOS are 0.37 cm, 0.79 cm and 1.47 cm, respectively. Furthermore, the results of this modeling can be used as learning material in understanding about seismic activity to minimize the impacts that arise in the future.

Modeling of the triangle optimum shape in the surface of an Aluminum dome structure (알루미늄 돔 구조물에서 표면의 삼각형 최적 형상 모델링)

  • 이성철;조종두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.647-650
    • /
    • 1997
  • A complete dome structure is based on a basic dome modeling, and the basic dome modeling affects safety of the dome structure. In other to save the manufacture expenses, an optimum shape modeling of a dome structure is necessary work of before manufacture of the dome. In this study, modeling of the triangle optimum shape in the surface of an aluminum dome is more focused to optimize shape of the dome and save manufacture expenses. After being made the systematic procedure of the basic modeling, the programming work of the procedure is performed. The program is made by C language, and the trust of the program is proved by comparison between output data of the program and basic modeling in PATRAN.

  • PDF

Turbine Blade Surface Modeling of Point Data Fitting (측정 데이타를 이용한 터어빈 블레이드의 곡면설계)

  • Ryu, Gap-Sang;Park, Sam-Jin
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.163-169
    • /
    • 1989
  • Many computer programs are being developed to aid the design of physical models. These efforts highlight the importance of computer model of three dimensional object. In this paper a CAD application program is introduced which can be implemented to modeling some part that composed with 3 types of surface form ; free form surface, fillt surface, surface of revolution, and a geometry description language which can represent a shape efficiently is preseneted.

  • PDF

Composite Surface Modeling of Three-Dimensional Structures -Theory and Algorithms- (3차원(次元) 구조물(構造物)의 복합곡면(複合曲面)모델링-이론(理論) 및 알고리즘)

  • Koh, Hyun Moo;Park, Young Ha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.43-52
    • /
    • 1990
  • Theoretical foundation and algorithms are presented of a new surface modeling and pre-processing system for the three-dimensional structures. The modeling method is based on the boundary representation scheme and composed of two hierarchical model structures: curve-network and surface models. The concept of modeling curve as a union of links is introduced to facilitate surface modeling via various transfinite mapping techniques or Coons Patches. Efficiency and novel aspects of the present method are discussed. Finite element mesh genceration and application procedures will be reported in a later paper.

  • PDF