• Title/Summary/Keyword: Surface crystal

Search Result 2,446, Processing Time 0.038 seconds

The radiation heat transfer among surface elements at initial stage of crystal growth in Czochralski system (Czochralski 법에 의한 단결정 성장 초기 단계에서 표면 요소 사이의 열전달)

  • 정형태;이경우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 1992
  • Radiation heat transfer was calculated for initial stage of crystal growth in Czochralski crystal growth system. View factors among surface elements were calculated for the estimation of heat evolution and all the surfaces were assumed to be diffuse-gray. The values of view factors were greatly different along the position of surface elements. The dissipated amounts of heat flux from the melt surface were 3.6 times larger than those from the crystal surface at the initial stage of crystal growth and this amounts were greater when the surface elements were not considered. The trijunction part of the crystal was greatly affected by the melt surface near the crystal. Consequently radiation heat transfer between surface elements must be considered in order to correctly simulate the initial crystal growth.

  • PDF

Corrosion of Quartz Crystal Marine Sensors in Sea Water (항만센서용 수정진동자의 해수에 의한 부식)

  • 최광재;장상목;김영한
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.323-328
    • /
    • 1998
  • A quartz crystal analyzer is utilized to monitor the corrosion process of an aluminum surface of a quartz crystal for marine sensor by sea water. A quartz crystal having 2000 $\AA$ of aluminum layer is installed in a specially designed cell and is in contact with sea water imitated electrolyte solution. While a constant potential is applied to the cell, the resonant frequency and resonant resistance are simultaneously measured using the quartz crystal analyzer. In addition, surface topographs are taken with an atomic force microscope(AFM) and the element analysis of the surface is conducted using an energy dispersive X-ray spectrometer(EDX). The simultaneous measurement of resonant frequency and resonant resistance during the corrosion process explains the change of surface structure caused by the corrosion. The variation of resonant frequency addresses the amount surface metal dissolution. As a conclusion, it is found that a simple measurement using the quartz crystal analyzer can replace the complex monitoring employing large equipments in the investigation of a corrosion process of sensor surface.

  • PDF

Effects of the crystal rotation on heat transfer and fluid flow in the modified floating-zone crystal growth (수정된 부유띠결정성장법에서 결정봉의 회전이 유동 및 열전달에 미치는 효과)

  • Seo, Jeong-Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3322-3333
    • /
    • 1996
  • A numerical analysis has been conducted to investigate a modified floating-zone crystal growth process in which most of the melt surface is covered with a heated ring. The crystal rod is not only pulled downward but rotated around its axisymmetric line during crystal growth process in order to produce the flat interface of crystal growth and the single crystal growth of NaNO3 is considered in 6mm diameter. The present study is made from a full-equation-based analysis considering a pulling velocity in all of solid and liquid domains and both of solid-liquid interfaces are tracked simultaneously with a governing equation in each domain. Numerical results are mainly presented for the comparison of the surface shape of rotational crystal rod with that of no-rotational crystal rod and the effects of revolution speeds of the crystal rod. Results show that the rotation of crystal rod produces more its flat surface. In addition, the shape of crystal growth near the centerline is more concaved with the increase in the revolution speed of crystal rod. The flow pattern and temperature distribution is analyzed and presented in each case. As the pulling velocity of crystal rod is increasing, the free surface of the melt below the heated ring is enlarged due to the crystal interface migrating downward.

Corrosion of Quartz Crystal Sensors in Sea Water (항만센서용 수정진동자의 해수에 의한 부식)

  • ;;;A. Egawa;H. Muramatsu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.183-188
    • /
    • 1998
  • A quartz crystal analyzer is utilized to monitor the cmsion process of an aluminum surface of a quartz crystal by sea water. A quartz crystal having 2000${\AA}$ of aluminum layer is installed in a spedally designed cell and is in contact with an electrolyte solution. While a constant potential is applied to the cell, the resonant frequency and resonant resistance are simultaneously measured using the quartz crystal analyzer. In addition, surface topographs are taken with an atomic force microscope(AFM) and the element analysis of the surface is conducted using an energy dispersive X-ray spectrornetedEDX). The simultaneous measurement of resonant frequency and resonant resistance during the corrosion process explains the change of surface structure caused by the corrosion. The variation of resonant frequency addresses the amount surface metal dissolution. As a conclusion, it is found that a simple measurement using the quartz crystal analyzer can replace the complex monitoring employing large equipments in the investigation of a corrosion process of metal surface.

  • PDF

A Study on the Ultrasonic Nano Crystal Surface Modification(UNSM) Technology and It's Application (초음파 나노표면개질기술의 특성과 활용방안 연구)

  • Pyoun, Young-Sik;Park, Jeong-Hyeon;Cho, In-Ho;Kim, Chang-Sik;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.190-195
    • /
    • 2009
  • All the failure in fatigue of torsion, bending and rolling contact, and in sliding wear begins mostly from surface. So much efforts have been invested to the surface technology which deal these problems during past decades, but the industrial demand keeps growing and more significant requirements are added to researchers and engineers. Nano crystal surface modification technology which makes the surface layers into nano crystalline, induces big and deep compressive residual stress, increases surface hardness, improves surface hardness, and make micro dimples structure on surface is an emerging technology which can break limits of current surface technology and relieve the burden of researchers and engineers. In this study, a nano crystal surface modification technology which is calling UNSM(Ultrasonic nano crystal surface modification) technology, is introduced and how it has been applied to industry to solve these failure problems is explained.

Molecular orientational surface structures of polymers for liquid crystal alignment

  • Ohe, Masahito
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.611-614
    • /
    • 2006
  • Sum-frequency vibrational spectroscopy (SFVS) has been used to study the molecular orientations at the polymer surfaces for liquid crystal alignment. Various molecular orientations appear at the surface depending on various types of surface treatments and polymers.

  • PDF

Surface Driven Switching in Liquid Crystal Displays

  • Komitov, Lachezar
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.14-16
    • /
    • 2009
  • Surface driven switching of the liquid crystal bulk arising from the coupling between an applied electric field and a polarized state of a nematic liquid crystal, both localized at the substrate surface, is reported. Fast switching is demonstrated in a hybrid aligned nematic cell with a fringe electric field generated by comb-like electrode structure.

  • PDF

A model of adsorption of liquid crystal on the polymer surface based on the analysis of the surface alignment of the adsorbed layer

  • Oh, Se-Jun;Miyashita, Tetsuya;Uchida, Tatsuo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.940-941
    • /
    • 2009
  • The adsorption strength of liquid crystal molecules on the polymer surface was compared measuring temperature dependence of retardation above Nematic-Isotoropic transition temperature ($T_{NI}$). The relationship between surface order parameter and adsorption strength on the polymer surface was discussed.

  • PDF

Thermal Inspection of GFRP using Liquid Crystal (액정을 이용한 GFRP의 열적시험법에 관한 연구)

  • Kim, Y.H.;Kwon, O.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.2
    • /
    • pp.50-55
    • /
    • 1990
  • Flaws in GFRP(Glass Fiber Reinforced Plastics) were thermally detected using cholesteric liquid crystals. Presence of flaws changes the thermal conductivity of GFRP, and disturbs heat flow. When a uniform heat source is applied, the surface temperature of flawed region is different from that of sound region. The surface temperature distributions were measured by thermo-optic properties of liquid crystal. Since the colors of liquid crystal indicate temperature distribution of GFRP surface, the thermal disturbance by flaws could be detected. The locations of flaws in GFRP could be determined from the distribution of liquid crystal colors.

  • PDF

Effect of O2, CO, and NO on the Surface Segregation in a Rh50Pd50 Bulk Crystal and a comparison to Rh50Pd50 Nanoparticles

  • Park, Mi-Ta;Grass, Michael E.;Aksoy, Funda;Zhang, Yawen;Liu, Zhi;Mun, Bong-Jin S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.84-84
    • /
    • 2010
  • We present an in-situ study of the interaction of a bimetallic Rh50Pd50 bulk crystal with O2, CO, and NO using ambient pressure x-ray photoelectron spectroscopy and compare it to results for 10 nm nanoparticles with the same overall composition. The surface of the bulk crystal has less Rh present under both oxidizing and reducing conditions than the nanoparticles under identical conditions. Segregation and oxidation/reduction proceeds quicker and at lower temperature for nanoparticles than for the bulk crystal. The near surface of the Rh50Pd50 bulk crystal after high temperature vacuum annealing is ca. 9% Rh measured by XPS. Heating in 0.1 Torr O2 to $350^{\circ}C$ increases the Rh surface composition to ca. 40%. The surface can then be reduced by heating in H2 at $150^{\circ}C$, leading to a reduced surface of 30% Rh. Titration of CO from this Rh-rich surface proceeds at a much lower pressure than on the Rh-deficient starting surface.

  • PDF