• Title/Summary/Keyword: Surface finishing materials

Search Result 210, Processing Time 0.038 seconds

Characteristics of the Tactile Brainwave on the Surface of Interior Finishing Materials - Focusing on the measurement of 'α-wave against β wave' - (실내마감재 표면에 감각하는 촉각적 뇌파특성 - '베타파에 대한 알파파' 측정 중심으로 -)

  • Yeo, Mi;Lee, Chang No
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.2
    • /
    • pp.59-69
    • /
    • 2016
  • This study aimed to understand the importance of applying finishing materials into interior space, and to add meaning to the creation of functional space, associated interior finishing materials with brain science. To achieve this purpose, brainwave(EEG) experiment was conducted. The brainwave appearing when sensing the surface of interior finishing materials with hands was measured. The locations of the electrode were FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, CZ, FZ, and PZ and in addition to these, AFZ was added. Eight(8) kinds of finishing materials: metallic material, film paper, lumbar, stone, glass, silk wallpaper, fabric, and paint were used to measure '${\alpha}$-wave against ${\beta}$ wave.' As a result, it was found that the most activated finishing material in term of relaxation was film paper, followed by metallic, glass, paint, fabric, stone, lumbar, and silk wallpaper. To explain in light of this, (1) '${\alpha}$-wave against ${\beta}$ wave' was the most activated at ch1-FP1 and ch2-FP2, and at ch17-AFZ and ch19-FZ, which indicated that metopic-prefrontal lobe showed the highest activation in relaxation. Film paper, among the finishing materials, showed the highest increase in relaxation. (2) In general, '${\alpha}$-wave against ${\beta}$ wave' relaxation was inhibited at ch13-T3 and ch14-T4, and at ch15-T5 and ch16-T6 and the arousal in the temporal lobe was prominent. Silk wallpaper, among the finishing materials, showed the highest arounsal effect. As a result of measuring the superficial touch on the silk wallpaper, which was regarded as the most rough material among the eight finishing materials, the arousal effect of ${\alpha}$-wave against ${\beta}$-wave, among the brainwave characteristics, was found to be the highest. (3) to judge from the scope of this experiment regarding the tactile sensation over the finishing materials, it is considered that the brainwave reaction sometimes appeared contrastive depending on whether the surface was smooth or rough and there also appeared a difference in relaxation and arousal reaction of the brainwave depending on whether the surface was hot or cold, but the sensation on the surface texture was often evaluated differently depending on who you were. For this reason, this study has some limitations.

Characteristics of Electroplated Sn-2.5Cu Alloy Layers for Surface Finishing (표면마무리를 위한 Sn-2.5Cu 합금 도금막의 특성)

  • Kim, Ju-Youn;Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.133-136
    • /
    • 2003
  • Sn-2.5Cu alloy layers were deposited on the Alloy 42 lead-frame substrates by the electroplating method, and their microstructures, adhesion strength, and electrical resistivity were measured to evaluate the applicability of Sn-Cu alloy as a surface finishing material of electronic parts. The Sn-2.5Cu layers were electroplated in the granular form, and composed of pure Sn and Cu$_{6}$Sn$_{5}$ intermetallic compound. Surfaces of the electroplated Sn-2.5Cu layers were rather rough and also the thickness variance was large. The adhesion strength of the Sn-2.5Cu electroplated layers was highly comparable to that of the electroplated Cu alloy layer and the electrical conductivity was about 10 times higher than the pure Sn. After the 20$0^{\circ}C$ 30 min. annealing of the electroplated Sn-2.5Cu layers, the surface roughness was reduced, and adhesion strength and conductivity were improved. These results showed the Sn-Cu alloys can be used as an excellent surface finishing material.ial.

A Experiment Study for the Standard Performance and Test of Surface Finishing Material for Parking Slab (주차장 바닥용 표면 마감재의 안전성 평가 및 성능기준에 관한 연구)

  • Kim Gue-Tae;Kwon Shi-Won;Kwak Kyu-Sung;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.125-131
    • /
    • 2005
  • Recently, to improve condition car park, using surface finishing material for variety color and property epoxy resin, urethane, cement mixed resin mortar or polymeric resin, and so on. However, it is frequent noise and wear out of tier and waterproofing materials, when the car slip or stop in car park, To minimize these cases, It is necessary that reduction of repair cost through performance long term durability of surface finishing material, improvement inside condition such as reduce dirty and car accident and ensurance the expected life of concrete slab in car park. Especially, we have not any tech for quality control, construction tech, production technology for car park surface materials, that's why park slab is not safety and suffer a loss. For this problems, this paper is to test surface finishing materials and as that result, suggest quality standard in the car park.

  • PDF

Effect of Surface Finishing Materials on the Moisture Conditions in Concrete: Vapor and Water Permeability of Finishing Materials Under Changing Environmental Conditions

  • Ryu, Dong-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • Permeability to vapor and water among other performances required for finishing materials is dealt with in this study. The relative moisture content of concrete coated/covered with a finishing material was experimentally investigated while changing the environmental conditions including temperature, relative humidity, and rainfall. An organic paint (water-based urethane), organic synthetic resin emulsion-type film coating (film coating E), and inorganic porcelain tiles were selected as the finishing materials. When compared from the aspect of vapor and water permeability, the vapor permeability and water permeability of water-based urethane were high and low, respectively; those of film coating E were high and high, respectively; and those of porcelain tiles were low and low, respectively. This means that the moisture state of concrete structures is governed not only by the environmental conditions but also by the performance of finishing materials. It is therefore of paramount importance to appropriately select a finishing material to address the specific deteriorative factors involved in the concrete structure to be finished.

Development of Finishing Panel using Surface Treatment Method (표면처리공법을 활용한 마감 패널 개발)

  • Kim, Kang-Min;Yoon, Seob;Kwan, Hae-Won;Gong, Min-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.57-58
    • /
    • 2019
  • Precast concrete finishing panels can be implemented in different colors, textures and designs relatively freely by different designers in different finishing materials. Therefore, we tried to develop a PC finishing panel that can be applied in the field by using various color pigment and concrete surface retardation method and polishing method.

  • PDF

Effects of different surface finishing procedures on the change in surface roughness and color of a polymer infiltrated ceramic network material

  • Ozarslan, Mehmet Mustafa;Buyukaplan, Ulviye Sbnem;Barutcigil, Cagtay;Arslan, Merve;Tuker, Nurullah;Barutcigil, Kubilay
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.16-20
    • /
    • 2016
  • PURPOSE. Polymer infiltrated ceramic network (PICN) materials, also called hybrid ceramics, are new materials in dental market. The manufacturer of the PICN material VITA Enamic suggests 3 different finishing procedures for this new material. In the present study, surface roughness and color differences caused from different finishing procedures of VITA Enamic were investigated. MATERIALS AND METHODS. 120 specimens were prepared in dimensions $2{\times}10{\times}12mm$ from VITA Enamic hybrid ceramic blocks with 'high translucency' and 'translucency 2M2' shades. The specimens were divided into 8 groups. For each group, different finishing procedures suggested by the manufacturer were performed. Surface roughness values were determined by a tactile portable profilometer. Color changes were evaluated using a clinical spectrophotometer. The data were analyzed using one-way ANOVA and Tukey's post-hoc comparison. The significance level was set at ${\alpha}=0.05$. RESULTS. The roughest surfaces were observed in Glaze Groups. Their surface roughness values were similar to that of the control group. Clinical Kit and Technical Kit groups did not show a statistically significant difference regarding surface roughness (P>.05). The largest color difference regarding ${\Delta}E_{00}$ was observed in Clinical Kit finishing groups. There were also statistically significant color changes between the groups (P<.05). However, all the groups showed clinically acceptable color change (${\Delta}E_{00}$<2.25) except Clinical Kit Groups (${\Delta}E_{00}$>2.25). CONCLUSION. Within the limitations of the present study, it may be suggested that finishing the VITA Enamic restorations by Technical Kit instead of Glaze and Clinical Kit gives better clinical performance in regard to surface roughness and shade matching.

Effects of different finishing/polishing protocols and systems for monolithic zirconia on surface topography, phase transformation, and biofilm formation

  • Mai, Hang-Nga;Hong, Su-Hyung;Kim, Sung-Hun;Lee, Du-Hyeong
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.81-87
    • /
    • 2019
  • PURPOSE. The purpose of this study was to evaluate the effects of various protocols and systems for finishing and polishing monolithic zirconia on surface topography, phase transformation, and bacterial adhesion. MATERIALS AND METHODS. Three hundred monolithic zirconia specimens were fabricated and then treated with three finishing and polishing systems (Jota [JO], Meisinger [ME], and Edenta [ED]) using four surface treatment protocols: coarse finishing alone (C); coarse finishing and medium polishing (CM); coarse finishing and fine polishing (CF); and coarse finishing, medium polishing, and fine polishing (CMF). Surface roughness, crystal phase transformation, and bacterial adhesion were evaluated using atomic force microscopy, X-ray diffraction, and streptococcal biofilm formation assay, respectively. One-way and two-way analysis of variance with Tukey post hoc tests were used to analyze the results (${\alpha}=.05$). RESULTS. In this study, the surface treatment protocols and systems had significant effects on the resulting roughness. The CMF protocol produced the lowest roughness values, followed by CM and CF. Use of the JO system produced the lowest roughness values and the smallest biofilm mass, while the ME system produced the smallest partial transformation ratio. The ED group exhibited the highest roughness values, biofilm mass, and partial transformation ratio. CONCLUSION. Stepwise surface treatment of monolithic zirconia, combined with careful polishing system selection, is essential to obtaining optimal microstructural and biological surface results.

A study on the effect factor of architectural material expression (재료의 물성 표현에 영향을 주는 요인 연구)

  • Kim, So-Hee
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.6 s.59
    • /
    • pp.60-67
    • /
    • 2006
  • In modem days when architectural materials have grave impacts on overall design expression, materials for architecture, especially finishing materials have become the most essential elements for the design expression, as architectural space and form have been. When it comes to the architectural materials, they can be conceived by visual and tactile sensory system and perceptional system which based on memory and experience. This study confirms how materials bring into effect on architecture in the sense of its design. The main subject of this analysis is expression method of architectural finishing materials. Also, this study finds out the relationship between finishing materials and the images of materials by analyzing the effect factor of architectural material expression with the perspectives of materials, formal and environments and by examining roles of the architectural materials in design. The material factor, in the expression of materiality, is how to make tectonic space and to vary the surface of building as finishing material design. The formal factor is related to set up the new direction in the architectural form and to create the dynamic and informal space. And the social and cultural environment as the effect factor gives new situation and context to architectural material expression. This principle enables us to use architectural materials as one of the important elements which express the whole characteristics of the area.

A Study on the Hydrophobicity Modification and Physical Properties of Tencel Regenerated Fibers for Polypropylene Resin Composites (폴리프로필렌 수지 복합을 위한 텐셀 재생섬유의 소수화 표면개질 특성 연구)

  • Yoon, Songhyun;Kim, Mikyung;Lee, Eunsoo
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.258-268
    • /
    • 2021
  • This study conducted on the introduction of recycled cellulose fibers, which are widely used in the textile industry as eco-friendly biomass materials, into polypropylene resins, which are mainly used for interior and exterior materials such as door trims and console parts of automobiles. In general, cellulose fibers can affect mechanical properties and have a lightening effect when used as a reinforcing agent. However, since cellulose fibers have hydrophilic properties and have relatively low compatibility with industrial polymer resins, they are used in combination through fiber hydrophobic surface treatment. Therefore, through this study, the reforming reaction conditions optimized in terms of hydrophobicity and workability for cellulose fibers are studied. Furthermore, polypropylene containing surface-modified cellulose fibers was prepared to compare physical properties by fiber content and study optimized content.

Evaluation of the Durability at RC Structure with Surface Finishing Materials using FEM Analysis. (FEM 해석을 통한 표면마감재 시공 RC 구조물의 내구성 평가)

  • Lee, Seong-Min;Lee, Han-Seoung;Kim, Dong-Seok;Lee, Woo-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.269-272
    • /
    • 2006
  • Chloride ion diffusion is the most important thing of occuring deterioration in RC structure. So it is important to decide the precise chloride ion diffusion coefficient in order to predict the durability life in RC structure. The purpose of this study is to analyze the established data, which are restricted by chloride diffusion coefficient, and to calculate chloride ion diffusion coefficient using RCPT test. To examine the prediction of the concrete structure durability by an FEM analysis and the chloride diffusion coefficient as a variable. Each surface finishing materials were effective on the increment of chloride penetration resistance, but showed a little different effect depending on the type of surface finishing material.

  • PDF