• Title/Summary/Keyword: Surface mounted permanent magnet synchronous motor

Search Result 82, Processing Time 0.022 seconds

Self-Commissioning for Surface-Mounted Permanent Magnet Synchronous Motors

  • Urasaki, Naomitsu;Senjyu, Tomonobu;Uezato, Katsumi
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.33-39
    • /
    • 2003
  • This paper presents the self-commissioning for surface-mounted permanent magnet synchronous motor. The proposed strategy executes three tests with a vector controlled inverter drive system. To do this, synchronous d-q axes currents are appropriately controlled for each test. From the three tests, armature resistance, armature inductance, equivalent iron loss resistance, and emf coefficient are identified automatically. The validity of the proposed strategy is confirmed by experimental results.

Current-Sensorless Maximum Torque per Ampere Control for a Surface Mounted Permanent Magnet Synchronous Motor with Low-Resolution Position Sensor (저분해능 위치센서를 갖는 표면부착형 영구자석 동기전동기의 전류센서 없는 단위 전류 당 최대 토크 제어)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.204-210
    • /
    • 2009
  • This paper proposes a novel current-sensorless maximum torque per ampere control for a surface mounted permanent magnet synchronous motor with low-resolution position sensor. A direct axis current is estimated from the mathematical model of the permanent magnet synchronous motor and the phase angle between direct and quadrature axis voltage commands is controlled to adjust the estimated direct axis current to zero, thus a maximum torque per ampere control can be achieved. The proposed method is suitable for low cost applications with slow dynamic response characteristics.

Performance Improvement of Sensorless Drives for Surface Mounted Permanent Magnet Synchronous Motor using a Dual PLL Structure (이중 PLL 구조를 이용한 표면부착형 영구자석 동기전동기 센서리스 구동장치의 성능 개선)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.543-546
    • /
    • 2017
  • This paper presents a simple approach for improving the performance of back-electromotive force (back-EMF)-estimation-based sensorless drives for surface-mounted permanent magnet synchronous motors (SPMSM). Similar to conventional approaches, a hypothetical d-q synchronous reference frame model of SPMSM is employed in the proposed approach to estimate the back-EMFs. This approach also employs a dual phase locked loop structure to compensate for the effect of the dead time and parameter uncertainty of the inverter on the estimated back-EMFs. The proposed algorithm is validated by conducting experiments.

T-S Fuzzy Tracking Control of Surface-Mounted Permanent Magnet Synchronous Motors with a Rotor Acceleration Observer

  • Jung, Jin-Woo;Choi, Han-Ho;Kim, Tae-Heoung
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.294-304
    • /
    • 2012
  • This paper proposes a fuzzy speed tracking controller and a fuzzy rotor angular acceleration observer for a surface-mounted permanent magnet synchronous motor (SPMSM) based on the Takagi-Sugeno (T-S) fuzzy model. The proposed observer-based controller is robust to load torque variations since it utilizes rotor angular acceleration information instead of the load torque value. Linear matrix inequality (LMI) sufficient conditions are given to compute the gain matrices of the speed tracking controller and the observer. In addition, it is mathematically verified that the proposed observer-based control system is asymptotically stable. Simulation and experimental results are presented to confirm that the proposed control algorithm assures a better transient behavior and less sensitivity under model parameter variations than the conventional PI control method.

Surface Mounted Permanent Magnet Synchronous Motor Design for Torque Ripple Reduction in EPS (EPS용 표면부착형 영구자석 동기전동기의 토크 리플 저감)

  • Lim, Seung-Bin;Park, Hyun-Jong;Kang, Dong-Woo;Ham, Sang-Hwan;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.27-31
    • /
    • 2010
  • Torque ripple of the motor used in EPS raises vibration problem on steering system. To solve this problem, this paper proposes a optimum design for torque ripple reduction of Surface-mounted Permanent Magnet Synchronous Motor(SPMSM) in EPS. Through analyis back-EMF using Finite element method as changing the shape of permanent magnet and stator shoe, we presented the method of torque ripple redution.

Influence of Cogging Torque Reduction Method on Torque Ripple in a Surface-Mounted Permanent Magnet Synchronous Motor

  • Kim, Tae-Woo;Chang, Jung-Hwan
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • The torque characteristics of a surface-mounted permanent magnet synchronous motor (SPMSM) are analyzed in this study. The harmonics of the back electromotive force (EMF) and cogging torque are analyzed by the finite element method to study their effects on the torque ripple. Although low cogging torque can be achieved by varying geometric parameters such as the permanent magnet (PM) offset and notch depth on the stator teeth, the torque ripple is increased in some cases. The analysis results show that the ripple of the generated torque is determined by not only the amplitudes but also the phases of harmonics for the back EMF and cogging torque.

Sensorless Drive for Mono Inverter Dual Parallel Surface Mounted Permanent Magnet Synchronous Motor Drive System (단일 인버터를 이용한 표면 부착형 영구자석 동기 전동기 병렬 구동 시스템의 센서리스 구동 방법)

  • Lee, Yongjae;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • This paper presents the sensorless drive method for mono inverter dual parallel (MIDP) surface mounted permanent magnet synchronous motor (SPMSM) drive system. MIDP motor drive system is a technique that can reduce the cost of the multi motor driving system. To maximize this merit of the MIDP motor drive system, the sensorless technique is essential to eliminate the position sensors. This paper adopts an appropriate sensorless method for MIDP SPMSM drive system, which uses the reduced order observer and phase locked loop (PLL) to reduce the calculation burden. The I-F control method is implemented for start-up and low speed operation. The validity and performance of the proposed algorithm are shown via experiments with 600-W SPMSMs.

Design of Surface-Mounted Permanent Magnet Synchronous Motor Considering Axial Leakage Flux by using 2-Dimensional Finite Element Analysis

  • Lee, Byeong-Hwa;Park, Hyung-Il;Jung, Jae-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2284-2291
    • /
    • 2018
  • This paper deals with optimum design of surface mounted permanent magnet synchronous motor (SPMSM) for automotive component. For a compact system structure, it was designed as a motor with a 14-pole 12-slot concentrated winding and hollow shaft. The motor is a thin type structure which stator outer diameter is relatively large compared to its axial length and is designed to have a high magnetic saturation for increasing the torque density. Since the high magnetic saturation in the stator core increases the axial leakage flux, a 3-dimensional (3-D) finite element analysis (FEA) is indispensable for torque analysis. However, optimum designs using 3-D FEA is inefficient in terms of time and cost. Therefore, equivalent 2-D FEA which is able to consider axial leakage flux is applied to the optimization to overcome the disadvantages of 3-D FEA. The structure for cost reduction is proposed and optimum design using equivalent 2-D FEA has been performed.

Self-Commissioning for Surface-Mounted Permanent Magnet Synchronous Motors

  • Urasaki Naomitsu;Senjyu Tomonobu;Uezato Katsumi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.331-335
    • /
    • 2001
  • This paper presents the self-commissioning for surface-mounted permanent magnet synchronous motor. The proposed strategy executes three tests with a standard inverter drive system. To do this, synchronous d-q axes currents are appropriately controlled for each test. From the three tests, armature resistance, armature inductance, equivalent iron loss resistance, and emf coefficient are identified automatically. The validity of the proposed strategy is confirmed by experimental results.

  • PDF

Fuzzy Logic Speed Control of a Surface-Mounted Permanent Magnet Synchronous Motor (표면 부착형 영구자석 동기전동기의 퍼지 속도제어)

  • Jung, Jin-Woo;Choi, Young-Sik;Yu, Dong-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.184-192
    • /
    • 2010
  • This paper proposes a new fuzzy speed controller to precisely regulate the speed of a surface-mounted permanent magnet synchronous motor(SPMSM). The proposed fuzzy controller needs the knowledge of the load torque to realize its robust and accurate control, thus the first-order load torque observer is adopted to estimate it. It is analytically confirmed that the overall control system containing the fuzzy speed controller and the load torque observer is exponentially stable. To prove the validity of the proposed fuzzy speed controller, the simulation and experimental results are shown. It is concluded that the proposed control scheme can be employed to accurately control the speed of a SPMSM motor.