• Title/Summary/Keyword: Surface plasmon resonance

Search Result 307, Processing Time 0.027 seconds

A novel surface plasmon resonance sensor without using imaging devices (영상 소자를 사용하지 않는 새로운 표면 플라즈몬 공명 센서)

  • Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.347-351
    • /
    • 2006
  • A novel surface plasmon resonance sensor, which can measure 2-dimensional array of immobilized ligands without using imaging devices such as CCD, has been proposed. Regular surface plasmon resonance can be directly used due to the insertion of additional layers with different thickness, on which each ligands are immobilized. Surface plasmon resonance signals are separated depending on the thickness of additional layers. The possibility of multi-sensing capability of the proposed surface plasmon resonance sensor has been verified by the modeling that is based on Fresnel reflection model.

Determination of Monoclonal Antibodies Capable of Recognizing the Native Protein Using Surface Plasmon Resonance

  • Kim, Deok-Ryong
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.452-456
    • /
    • 2001
  • Surface plasmon resonance has been used for a biospecific interaction analysis between two macromolecules in real time. Determination of an antibody that is capable of specifically interacting with the native form of antigen is very useful for many biological and medical applications. Twenty monoclonal antibodies against the $\alpha$ subunit of E. coli DNA polymerase III were screened for specifically recognizing the native form of protein using surface plasmon resonance. Only four monoclonal antibodies among them specifically recognized the native $\alpha$ protein, although all of the antibodies were able to specifically interact with the denatured $\alpha$ subunit. These antibodies failed to interfere with the interaction between the $\tau$ and $\alpha$ subunits that were required for dimerization of the two polymerases at the DNA replication fork. This real-time analysis using surface plasmon resonance provides an easy method to screen antibodies that are capable of binding to the native form of the antigen molecule and determine the biological interaction between the two molecules.

  • PDF

Localized Surface Plasmon Resonance Coupling in Self-Assembled Ag Nanoparticles by Using 3-Dimensional FDTD Simulation (3차원 FDTD Simulation을 이용한 자기조립된 Ag 나노입자의 국소표면플라즈몬공명 상호작용 현상 연구)

  • Lee, Kyung-Min;Yoon, Soon-Gil;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.417-422
    • /
    • 2014
  • In this study, we investigated localized surface plasmon resonance and the related coupling phenomena with respect to various geometric parameters of Ag nanoparticles, including the size and inter-particle distance. The plasmon resonances of Ag nanoparticles were studied using three-dimensional finite difference time domain(FDTD) calculations. From the FDTD calculations, we discovered the existence of a symmetric and an anti-symmetric plasmon coupling modes in the coupled Ag nanoparticles. The dependence of the resonance wavelength with respect to the inter-particle distance was also investigated, revealing that the anti-symmetric mode is more closely correlated with the inter-particle distance of the Ag nanoparticles than the symmetric mode. We also found that higher order resonance modes are appeared in the extinction spectrum for closely spaced Ag nanoparticles. Plasmon resonance calculations for the Ag particles coated with a $SiO_2$ layer showed enhanced plasmon coupling due to the strengthened plasmon resonance, suggesting that the inter-particle distance of the Ag nanoparticles can be estimated by measuring the transmission and absorption spectra with the plasmon resonance of symmetric and anti-symmetric localized surface plasmons.

Surface Plasmon Resonance Based on ZnO Nano-grating Structure (산화아연을 이용한 나노격자 구조의 표면 플라즈몬 공명)

  • Kim, Doo-Gun;Kim, Seon-Hoon;Ki, Hyun-Chul;Kim, Hwe-Jong;Oh, Geum-Yoon;Choi, Young-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.922-926
    • /
    • 2010
  • We have investigated the grating coupled surface plasmon resonance (GC-SPR) sensors using ZnO nano-grating structures to enhance the sensitivity of an SPR sensor. The GC-SPR sensors were analyzed using the finite-difference time-domain method. The optimum resonance angles of 49 degrees are obtained in the 150 nm wide grating structure with a period of 300 nm for the ZnO thickness of 30 nm. Then, the ZnO nano-grating patterns were fabricated by using laser interference lithography. The measured resonance angle of nano-grating patterns was around 49 degrees. Here, an enhanced evanescent field is obtained due to the surface plasmon on the edge of the bandgap when the ZnO grating structures are used to excite the surface palsmon.

Control the Work Function and Plasmon Effect on Graphene Surface Using Metal Nanoparticles for High Performance Optoelectronics

  • Park, Si Jin;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.166.1-166.1
    • /
    • 2014
  • We have controlled the graphene surface in two ways to improve the device performance of optoelectronics based on graphene transparent conductive films. We controlled multilayer graphene (MLG) work function and localized surface plasmon resonance wavelength using a silver nanoparticles formed on graphene surface. Graphene substrates were prepared using a chemical vapor deposition and transfer process. Various size of silver nanoparticles were prepared using a thermal evaporator and post annealing process on graphene surface. Silver nanoparticles were confirmed by using scanning electron microscopy (SEM). Work functions of graphene surface with various sizes of Ag nanoparticles were measured using ultraviolet photoelectron spectroscopy (UPS). The result shows that the work functions of MLG could be controlled from 4.39 eV to 4.55 eV by coating different amounts of silver nanoparticles while minimal changes in the sheet resistance and transmittance. Also the Localized surface plasmon resonance (LSPR) wavelength was investigated according to various sizes of silver nanoparticles. LSPR wavelength was measured using the absorbance spectrum, and we confirmed that the resonance wavelength could be controlled from 396nm to 425nm according to the size of silver nanoparticles on graphene surface. To confirm improvement of the device performance, we fabricated the organic solar cell based on MLG electrode. The results show that the work function and plasmon resonance wavelength could be controlled to improve the performance of optoelectronics device.

  • PDF

Determination of Optical Constants and Thickness of Thin Metal Films by Measurement of Surface Plasmon Resonance (표면 플라즈몬 공명 측정에 의한 금속 박막의 광학 상수와 두께 결정)

  • 황보창권;최철재;최동철
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.59-66
    • /
    • 1991
  • Resonance angle and optimum thinckness of various thin metal films for surface plasmon resonance were calculated using an admittance diagram and optical constants and thickness of thin Ag films and Al films were determined by fitting the measured reflectance of surface plasmon resonance. Two wavelengths of an Ar ion laser were employed to select the unique optical constants which have the same thickness at two wavelengths. Also, when these films were exposed to the air, the shift of surface plasmon resonance was measured and the optical constants of modified thin films were determined.

  • PDF

Interaction Between Surface Plasmon Resonance and Inter-band Transition in Gold Thin Film (금 박막에서 표면 플라즈몬 공명과 국소적 밴드 간 천이의 상호작용)

  • Kang, Daekyung;Kumar, Marredi Bharath;Adeshina, Mohammad Awwal;Choi, Bongjun;Park, Jonghoo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.262-265
    • /
    • 2019
  • The effect of inter-band transition on surface plasmon resonance in gold thin film was investigated. We induced localized inter-band transition in the film by using incident light on its surface from a green laser (532 nm) source, and the surface plasmon resonance for inter-band transition was investigated at different wavelengths. It was determined that the reflectivity of blue light (450 nm) was significantly reduced in the region where the green laser was incident. We demonstrated that this decrease is mainly due to the coupling between the blue light and the surface plasmon resonance of excited electrons in higher energy states, based on experimental results for the incident and polarization angle-dependent reflectivity of the blue light.

The Effect of Surface Plasmon on Internal Photoemission Measured on Ag/$TiO_2$ Nanodiodes

  • Lee, Hyosun;Lee, Young Keun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.662-662
    • /
    • 2013
  • Over the last several decades, innovative light-harvesting devices have evolved to achieve high efficiency in solar energy transfer. Research on the mechanisms for plasmon resonance is very desirable to overcome the conventional efficiency limits of photovoltaics. The influence of localized surface plasmon resonance on hot electron flow at a metal-semiconductor interface was observed with a Schottky diode composed of a thin silver layer on $TiO_2$. The photocurrent is generated by absorption of photons when electrons have enough energy to travel over the Schottky barrier and into the titanium oxide conduction band. The correlation between the hot electrons and the surface plasmon is confirmed by matching the range of peaks between the incident photons to current conversion efficiency (IPCE, flux of collected electrons per flux of incident photons) and UV-Vis spectra. The photocurrent measured on Ag/$TiO_2$ exhibited surface plasmon peaks; whereas, in contrast to the Au/$TiO_2$, a continuous Au thin film doesn't exhibit surface plasmon peaks. We modified the thickness and morphology of a continuous Ag layer by electron beam evaporation deposition and heating under gas conditions and found that the morphological change and thickness of the Ag film are key factors in controlling the peak position of light absorption.

  • PDF

The Integrated Surface Plasmon Resonance Sensor using Polymer Optical Waveguide (폴리머 광도파로를 이용한 집적형 표면 플라즈몬 공명 센서)

  • Oh, Geum-Yoon;Kim, Doo-Gun;Kim, Hong-Seung;Lee, Tae-Kyeong;Choi, Young-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.433-436
    • /
    • 2012
  • We propose a novel micro surface plasmon resonance (SPR) sensor system based on polymer materials. The proposed SPR system consists of the incident medium with polymer waveguide and the gold thin film for sensing area. Using a polymer optical waveguide instead of a prism in SPR sensing system offers miniaturization, low cost, and potable sensing capability. The whole device performance was analyzed using the finite-difference time domain method. The optimum gold thickness in the attenuated total reflection mirror of polymer waveguide is around 50 nm and the resonance angle to generate surface plasmon wave is 68 degrees.