• Title/Summary/Keyword: Surveillance Sensor Networks

Search Result 78, Processing Time 0.029 seconds

Wireless Sensor Networks based Forest Fire Surveillance System

  • Son, Byung-Rak;Kim, Jung-Gyu
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.123-126
    • /
    • 2005
  • Wireless Sensor Networks will revolutionize applications such as environmental monitoring, home automation, and logistics. We developed forest fire surveillance system. In this paper, Considering the fact that in Korea, during November to May, forest fires occur very frequently causing catastrophic damages on the valuable environment, Although exists other forest fire surveillance system such as surveillance camera tower, infrared ray sensor system and satellite system. Preexistence surveillance system can't real-time surveillance, monitoring, database and automatic alarm. But, forest fire surveillance system(FFSS) support above. In this paper, we describes a system development approach for a wireless sensor network based FFSS that is to be used to measure temperature and humidity as well as being fitted with a smoke detector. Such a device can be used as an early warning fire detection system and real-time surveillance in the area of a bush fire or endangered public infrastructure. Once the system has being development, a mesh network topology will be implemented with the chosen sensor node with the aim of developing a sophisticated mesh network.

  • PDF

Efficient Clustering and Data Transmission for Service-Centric Data Gathering in Surveillance Sensor Networks (감시정찰 센서 네트워크에서 서비스 기반 정보수집을 위한 효율적인 클러스터링 및 데이터 전송 기법)

  • Song, Woon-Seop;Jung, Woo-Sung;Seo, Youn;Ko, Young-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.304-313
    • /
    • 2013
  • Wireless Sensor Networks, especially supporting for surveillance service, are one of the core properties of network-centric warfare(NCW) that is a key factor of victory in future battlefields. Such a tactical surveillance sensor network must be designed not just for energy efficiency but for real-time requirements of emergency data transmission towards a control center. This paper proposes efficient clustering-based methods for supporting mobile sinks so that the network lifetime can be extended while emergency data can be served as well. We analyze the performance of the proposed scheme and compare it with other existing schemes through simulation via Qualnet 5.0.

Multi-layer Surveillance System based on Wireless Mesh Networks (무선 메쉬 네트워크 기반의 다층구조 감시 시스템 구축)

  • Yoon, Tae-Ho;Song, Yoo-Seoung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.5
    • /
    • pp.209-217
    • /
    • 2012
  • In the present, Wireless Sensor Network(WSN) has been used for the purpose of the military operation with surveillance systems and for collecting useful information from the natural environment. Basically, low-power, easy deployment and low cost are the most important factors to be deployed for WSNs. Lots of researches have been studied to meet those requirements, especially on the node capacity and battery lifetime improvements. Recently, the study of wireless mesh networks applied into the surveillance systems has been proceeded as a solution of easy deployment. In this paper, we proposed large-scale intelligent multi-layer surveillance systems based on QoS assuring Wireless Mesh Networks and implemented them in the real testbed environment. The proposed system explains functions and operations for each subsystem as well as S/W and H/W architectures. Experimental results are shown for the implemented subsystems and the performance is satisfactory for the surveillance system. We can identify the possibility of the implemented multi-layer surveillance system to be used in practice.

Low Delay Data Transmission Mechanism for Military Surveillance in Wireless Sensor Networks (무선 센서 네트워크에서 군 감시 정찰을 위한 저 지연 데이터 전송 메커니즘)

  • Jeon, Jun-heon;Lee, Sung-choon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.855-860
    • /
    • 2017
  • One of the most important issues in Wireless Sensor Networks is to save energy of the sensor node. But transmission latency is also the problem to solve for some applications such as military surveillance, object tracking. In these applications sensor node needs to send lots of data in limited time when an even such as object appearance occurs. So a delay efficient data transmission method is required. In this paper we propose a MAC protocol adequate for those applications. This paper proposed a low delay data transmission mechanism for military surveillance in wireless sensor networks. In the MAC protocol, a receiver node sends another beacon frame to sender node after receiving data packet. Using this second beacon frame, fast hop-to-hop transmission can be performed. Results have shown that the proposed MAC control mechanism outperformed RI-MAC protocol in the terms of latency.

Development of Multi-Sensor Station for u-Surveillance to Collaboration-Based Context Awareness (협업기반 상황인지를 위한 u-Surveillance 다중센서 스테이션 개발)

  • Yoo, Joon-Hyuk;Kim, Hie-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.780-786
    • /
    • 2012
  • Surveillance has become one of promising application areas of wireless sensor networks which allow for pervasive monitoring of concerned environmental phenomena by facilitating context awareness through sensor fusion. Existing systems that depend on a postmortem context analysis of sensor data on a centralized server expose several shortcomings, including a single point of failure, wasteful energy consumption due to unnecessary data transfer as well as deficiency of scalability. As an opposite direction, this paper proposes an energy-efficient distributed context-aware surveillance in which sensor nodes in the wireless sensor network collaborate with neighbors in a distributed manner to analyze and aware surrounding context. We design and implement multi-modal sensor stations for use as sensor nodes in our wireless sensor network implementing our distributed context awareness. This paper presents an initial experimental performance result of our proposed system. Results show that multi-modal sensor performance of our sensor station, a key enabling factor for distributed context awareness, is comparable to each independent sensor setting. They also show that its initial performance of context-awareness is satisfactory for a set of introductory surveillance scenarios in the current interim stage of our ongoing research.

Analyses of Key Management Protocol for Wireless Sensor Networks in Wireless Sensor Networks (무선 센서 네트워크망에서의 효율적인 키 관리 프로토콜 분석)

  • Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.799-802
    • /
    • 2005
  • In this paper, we analyses of Key Management Protocol for Wireless Sensor Networks in Wireless Sensor Networks. Wireless sensor networks have a wide spectrum of civil military application that call for security, target surveillance in hostile environments. Typical sensors possess limited computation, energy, and memory resources; therefore the use of vastly resource consuming security mechanism is not possible. In this paper, we propose a cryptography key management protocol, which is based on identity based symmetric keying.

  • PDF

A Node Deployment Strategy Considering Environmental Factors and the Number of Nodes in Surveillance and Reconnaissance Sensor Network (감시정찰 센서네트워크에서 환경요소와 노드수량을 고려한 노드 배치 전략)

  • Kim, Yong-Hyun;Chung, Kwang-Sue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1670-1679
    • /
    • 2011
  • In the area of wireless sensor networks, sensor coverage and network connectivity problems are caused by a limited detection range and the communication distance of the nodes. To solve the coverage and connectivity problems, many studies are suggested, but most research is restricted to apply into the real environment because they didn't consider various environmental factors on wireless sensor network deployment. So in this paper, we propose a node deployment strategy considering environmental factors and the number of nodes in surveillance and reconnaissance sensor networks(SRSN). The proposed node deployment method divides the installation of the surveillance and reconnaissance sensor networks system into four steps such as identification of influences factors for node placement through IPB process, sensor node deployment based on sensing range, selection of monitoring site, and relay node deployment based on RF communication range. And it deploys the sensor nodes and relay nodes considered the features of the surveillance and reconnaissance sensor network system and environmental factors. The result of simulation indicates that the proposed node deployment method improves sensor coverage and network connectivity.

Design Strategy of Low-Power Node by Analyzing the Hardware Modules in Surveillance and Reconnaissance Sensor Networks (감시정찰 센서네트워크에서 하드웨어 모듈의 소모전력 분석을 통한 저전력 노드 설계 전략)

  • Kim, Yong-Hyun;Yeo, Myung-Ho;Chung, Kwangsue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.761-769
    • /
    • 2012
  • In this paper, we propose a low-power design strategy to minimize energy-consumption for surveillance and reconnaissance sensor networks. The sensor network consists of many different nodes with various operations such as target detection, packet relay, video monitoring, changing protocols, and etc. Each sensor node consists of sensing, computing, communication, and power components. These components are integrated on a single or multiple boards. Therefore, the power consumption of each component can be different on various operation types. First, we identified the list of components and measured power consumption for them from the first prototype nodes. Next, we focus on which components are the main sources of energy consumption. We propose many energy-efficient approaches to reduce energy consumption for each operation type.

Self-Identification of Boundary's Nodes in Wireless Sensor Networks

  • Moustafa, Kouider Elouahed;Hafid, Haffaf
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.128-140
    • /
    • 2017
  • The wireless sensor networks (WSNs) became a very essential tool in borders and military zones surveillance, for this reason specific applications have been developed. Surveillance is usually accomplished through the deployment of nodes in a random way providing heterogeneous topologies. However, the process of the identification of all nodes located on the network's outer edge is very long and energy-consuming. Before any other activities on such sensitive networks, we have to identify the border nodes by means of specific algorithms. In this paper, a solution is proposed to solve the problem of energy and time consumption in detecting border nodes by means of node selection. This mechanism is designed with several starter nodes in order to reduce time, number of exchanged packets and then, energy consumption. This method consists of three phases: the first one is to detect triggers which serve to start the mechanism of boundary nodes (BNs) detection, the second is to detect the whole border, and the third is to exclude each BN from the routing tables of all its neighbors so that it cannot be used for the routing.

Resource Reservation Based Image Data Transmission Scheme for Surveillance Sensor Networks (감시정찰 센서 네트워크를 위한 자원예약 기반 이미지 데이터 전송 기법)

  • Song, Woon-Seop;Jung, Woo-Sung;Ko, Young-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1104-1113
    • /
    • 2014
  • Future combat systems can be represented as the NCW (Network Centric Warefare), which is based on the concept of Sensor-to-Shooter. A wireless video sensor networking technology, one of the core components of NCW, has been actively applied for the purpose of tactical surveillance. In such a surveillance sensor network, multi-composite sensors, especially consisting of image sensors are utilized to improve reliability for intrusion detection and enemy tracing. However, these sensors may cause a problem of requiring very high network capacity and energy consumption. In order to alleviate this problem, this paper proposes an image data transmission scheme based on resource reservation. The proposed scheme can make it possible to have more reliable image data transmission by choosing proper multiple interfaces, while trying to control resolution and compression quality of image data based on network resource availability. By the performance analysis using NS-3 simulation, we have confirmed the transmission reliability as well as energy efficiency of the proposed scheme.