• Title/Summary/Keyword: Suspension bridges

Search Result 233, Processing Time 0.02 seconds

Application of inverse reliability method to estimation of cable safety factors of long span suspension bridges

  • Cheng, Jin;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.195-207
    • /
    • 2006
  • An efficient and accurate algorithm is proposed to estimate cable safety factor of suspension bridges satisfying prescribed reliability levels. Uncertainties in the structure and load parameters are incorporated. The proposed algorithm integrates the concepts of the inverse reliability method and deterministic method for assessing cable safety factors of suspension bridges. The unique feature of the proposed method is that it offers a tool for cable safety assessment of suspension bridges, when the reliability level is specified as a target to be satisfied by the designer. After the accuracy and efficiency of the method are demonstrated through two numerical examples, the method is used to estimate cable safety factors of suspension bridges with span length ranging from 2000 to 5000 m. The results show that the deterministic method overestimates cable safety factor of suspension bridges because of neglecting the parameter uncertainty effects. The actual cable safety factor of suspension bridges should be estimated based on the proposed method.

Vision-based Input-Output System identification for pedestrian suspension bridges

  • Lim, Jeonghyeok;Yoon, Hyungchul
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.715-728
    • /
    • 2022
  • Recently, numbers of long span pedestrian suspension bridges have been constructed worldwide. While recent tragedies regarding pedestrian suspension bridges have shown how these bridges can wreak havoc on the society, there are no specific guidelines for construction standards nor safety inspections yet. Therefore, a structural health monitoring system that could help ensure the safety of pedestrian suspension bridges are needed. System identification is one of the popular applications for structural health monitoring method, which estimates the dynamic system. Most of the system identification methods for bridges are currently adapting output-only system identification method, which assumes the dynamic load to be a white noise due to the difficulty of measuring the dynamic load. In the case of pedestrian suspension bridges, the pedestrian load is within specific frequency range, resulting in large errors when using the output-only system identification method. Therefore, this study aims to develop a system identification method for pedestrian suspension bridges considering both input and output of the dynamic system. This study estimates the location and the magnitude of the pedestrian load, as well as the dynamic response of the pedestrian bridges by utilizing artificial intelligence and computer vision techniques. A simulation-based validation test was conducted to verify the performance of the proposed system. The proposed method is expected to improve the accuracy and the efficiency of the current inspection and monitoring systems for pedestrian suspension bridges.

Application of inverse reliability method to estimation of flutter safety factors of suspension bridges

  • Cheng, Jin;Dong, Fenghui
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.249-265
    • /
    • 2017
  • An efficient and accurate algorithm is proposed to estimate flutter safety factor of suspension bridges satisfying prescribed reliability levels. Uncertainties which arise from the basic wind speed at the bridge deck location, critical flutter velocity, the wind conversion factor from a scaled model to the prototype structure and the gust speed factor are incorporated. The proposed algorithm integrates the concepts of the inverse reliability method and the calculation method of the critical flutter velocity of suspension bridges. The unique feature of the proposed method is that it offers a tool for flutter safety assessment of suspension bridges, when the reliability level is specified as a target to be satisfied by the designer. Accuracy and efficiency of this method with reference to three example suspension bridges is studied and numerical results validate its superiority over conventional deterministic method. Finally, the effects of various parameters on the flutter safety factor of suspension bridges are also investigated.

Probabilistic sensitivity analysis of suspension bridges to near-fault ground motion

  • Cavdar, Ozlem
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.15-39
    • /
    • 2013
  • The sensitivities of a structural response due to variation of its design parameters are prerequisite in the majority of the algorithms used for fundamental problems in engineering as system uncertainties, identification and probabilistic assessments etc. The paper presents the concept of probabilistic sensitivity of suspension bridges with respect to near-fault ground motion. In near field earthquake ground motions, large amplitude spectral accelerations can occur at long periods where many suspension bridges have significant structural response modes. Two different types of suspension bridges, which are Bosporus and Humber bridges, are selected to investigate the near-fault ground motion effects on suspension bridges random response sensitivity analysis. The modulus of elasticity is selected as random design variable. Strong ground motion records of Kocaeli, Northridge and Erzincan earthquakes are selected for the analyses. The stochastic sensitivity displacements and internal forces are determined by using the stochastic sensitivity finite element method and Monte Carlo simulation method. The stochastic sensitivity displacements and responses obtained from the two different suspension bridges subjected to these near-fault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts stochastic sensitivity responses of suspension bridges. The stochastic sensitivity information provides a deeper insight into the structural design and it can be used as a basis for decision-making.

Investigation on the wind-induced instability of long-span suspension bridges with 3D cable system

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • The cable system is generally considered to be a structural solution to increase the spanning capacity of suspension bridges. In this work, based on the Runyang Bridge over the Yangtze River, three case suspension bridges with different 3D cable systems are designed, structural dynamic characteristics, the aerostatic and aerodynamic stability are investigated numerically by 3D nonlinear aerostatic and aerodynamic analysis, and the cable system favorable to improve the wind-induced instability of long-span suspension bridges is also proposed. The results show that as compared to the example bridge with parallel cable system, the suspension bridge with inward-inclined cable system has greater lateral bending and tensional frequencies, and also better aerodynamic stability; as for the suspension bridge with outward-inclined cable system, it has less lateral bending and tensional frequencies, and but better aerostatic stability; however the suspension bridge is more prone to aerodynamic instability, and therefore considering the whole wind-induced instability, the parallel and inward-inclined cable systems are both favorable for long-span suspension bridges.

Advanced aerostatic stability analysis of suspension bridges

  • Xiao, Ru-Cheng;Cheng, Jin
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.55-70
    • /
    • 2004
  • Aerostatic instability of a suspension bridge may suddenly appears when the deformed shape of the structure produces an increase in the value of the three components of displacement-dependent wind loads distributed in the structure. This paper investigates the aerostatic stability of suspension bridges using an advanced nonlinear method based on the concept of limit point instability. Particular attention is devoted to aerostatic stability analysis of symmetrical suspension bridges. A long-span symmetrical suspension bridge (Hu Men Bridge) with a main span of 888 m is chosen for analysis. It is found that the initial configuration (symmetry or asymmetry) may affect the instability configuration of structure. A finite element software for the nonlinear aerostatic stability analysis of cable-supported bridges (NASAB) is presented and discussed. The aerostatic failure mechanism of suspension bridges is also explained by tracing aerostatic instability path.

Seismic Analysis of Cable-Supported Bridges (케이블 지지교량의 내진해석)

  • 서영국;정운용;조준상
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.233-240
    • /
    • 1999
  • A general procedure is presented here to develope seismic design and analysis method for cable-supported bridges like suspension bridges subjected to ground motion. For representing a numerical model of suspension bridges. a new approach which satisfy design conditions for the initial equilibrium state of suspension bridges. without any nonlinear iterations. is proposed. The dynamic behavior of that model is verified by free vibration analysis. This study uses the response spectrum analysis to determine the Peak response of a suspension bridge to earthquake-induced ground motion. The SRSS(Square Root of Sum of Square). modal combination rule, is adopted for each direction, longitudinal and transverse. To illustrate the potential applicability for the seismic design of suspension bridges, a numerical example is presented in which the dynamic response of the Nam-hae suspension bridge subjected to earthquake

  • PDF

Development of Design Technique for Suspension Bridges Using Influence Surface (영향면을 이용한 현수교 설계기법 개발)

  • 조준상;정운용;서영국
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.119-126
    • /
    • 1999
  • In this paper, The program of design technique of Influence surface is presented for analysis of moving(live) load of long-span bridges such as suspension bridges. This program is verified by comparing with various numerical examples. The proposed program is calculated the design conditions for the initial equilibrium state of suspension bridges, hence it can be used to analysis of various 3-dimensional frame structure with cable system.

  • PDF

Aerostatic instability mode analysis of three-tower suspension bridges via strain energy and dynamic characteristics

  • Zhang, Wen-ming;Qian, Kai-rui;Wang, Li;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.163-175
    • /
    • 2019
  • Multispan suspension bridges make a good alternative to single-span ones if the crossed strait or river width exceeds 2-3 km. However, multispan three-tower suspension bridges are found to be very sensitive to the wind load due to the lack of effective longitudinal constraint at their central tower. Moreover, at certain critical wind speed values, the aerostatic instability with sharply deteriorating dynamic characteristics may occur with catastrophic consequences. An attempt of an in-depth study on the aerostatic stability mode and damage mechanism of three-tower suspension bridges is made in this paper based on the assessment of strain energy and dynamic characteristics of three particular three-tower suspension bridges in China under different wind speeds and their further integration into the aerostatic stability analysis. The results obtained on the three bridges under study strongly suggest that their aerostatic instability mode is controlled by the coupled action of the anti-symmetric torsion and vertical bending of the two main-spans' deck, together with the longitudinal bending of the towers, which can be regarded as the first-order torsion vibration mode coupled with the first-order vertical bending vibration mode. The growth rates of the torsional and vertical bending strain energy of the deck after the aerostatic instability are higher than those of the lateral bending. The bending and torsion frequencies decrease rapidly when the wind speed approaches the critical value, while the frequencies of the anti-symmetric vibration modes drop more sharply than those of the symmetric ones. The obtained dependences between the critical wind speed, strain energy, and dynamic characteristics of the bridge components under the aerostatic instability modes are considered instrumental in strength and integrity calculation of three-tower suspension bridges.

Study on economic performances of multi-span suspension bridges part 2: parametric study

  • Zhang, Li-Wen;Xiao, Ru-Cheng;Sun, Bin;Jiang, Yang;Zhang, Xue-Yi;Zhuang, Dong-Li;Zhou, Yun-Gang;Tu, Xue
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.287-305
    • /
    • 2013
  • Economic performances of consecutive multi-span suspension bridges are studied. The material amount and cost estimation formulas of the bridges have been derived in the part 1 of the study. A parametric study is carried out based on the formulas for investigating the different factors' effect on the bridge cost. The factors include the bridge sag, the bridge span, the bridge foundation and the environment condition, etc. Then, an economical layout of the bridges is proposed for different conditions. Lastly, a selection of suspension bridge types is discussed based on the economy of bridges.