• Title/Summary/Keyword: Suspension bushings

Search Result 19, Processing Time 0.021 seconds

Development of a Measurement System of Torsional and Conical Suspension Bushing Rates with the Flexible Jig (유연 지그를 이용한 서스펜션 부싱의 비틀림 및 원추 강성 측정기 개발)

  • 이재곤;박용국;김기대
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.121-127
    • /
    • 2003
  • The stiffness of a bushing in a suspension is extremely important for the overall performance of the suspension system. A new measurement system including the flexible jig was developed to measure the multi-directional stiffness of bushings. To overcome the disadvantage of building each individual jig for each type and size of a bushing, we designed the flexible jig which can accommodate numerous bushings of similar shapes and sizes. Upon using the novel design of the flexible jig in the industry, we could successfully measure the torsional and conical stiffness of many bushings and apply the data for the prediction and evaluation of the performance of a suspension system, which would assist designing the optimal suspension system.

Design of a Torque Arm Pin and Elastomeric Bushings for the Three-point-Suspension Gearbox of a Wind Turbine (풍력발전기용 3점 지지 기어박스의 토크암 핀 및 탄성중합체 부싱 설계)

  • Shim, Sung Bo;Nam, Ju Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.199-204
    • /
    • 2017
  • In this study, analytical methods for designing a torque arm pin and elastomeric bushings of a conventional-type three-point-suspension gearbox of a wind turbine are investigated. The design loads for the torque arm were derived by considering the effects of the transmitted torque and self-weight of the gearbox. Based on the design loads, design methods for the torque arm pin and elastomeric bushings were introduced in the terms of material and size selection. Finally, a small-scale conventional-type gearbox was designed by applying the derived design methods. This study is an elementary and analytical study for the design of the torque arm pin and elastomeric bushings. It is necessary to verify and supplement the results further through extensive experimentation.

A Study on the Effects of Metallic Barriers on Surface Discharge and It's Application to Insulators and Bushings (연면방전에 미치는 도전층의 영향 및 그 애자, 투관에의 응용에 관한 연구)

  • 정성계
    • 전기의세계
    • /
    • v.19 no.2
    • /
    • pp.1-5
    • /
    • 1970
  • According to the previous studies which was done by the author, the flashover voltage was found to be increased considerably if some metallic barriere are inserted into the flashover discharge path. This paper shows that the flashover voltage in suspension insulators and bushings is raised up by the application of metallic barrier effect on surface discharge. Using moderate metallic barrier configulation the flash over voltage can be raised up by the amount of about 15% compared to that of the convensional type of suspension insulatiors and bushings.

  • PDF

A new method to calculate the equivalent stiffness of the suspension system of a vehicle

  • Zhao, Pinbin;Yao, Guo-Feng;Wang, Min;Wang, Xumin;Li, Jianhui
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.363-378
    • /
    • 2012
  • The stiffness of a suspension system is provided by the bushings and the stiffness of the wheel center controls the suspension's elasto-kinematic (e-k) specification. So the stiffness of the wheel center is very important, but the stiffness of the wheel center is very hard to measure. The paper give a new method that we can use the stiffness of the bushings to calculate the equivalent stiffness of the wheel center, which can quickly and widely be used in all kinds of suspension structure. This method can also be used to optimize and design the suspension system. In the example we use the method to calculate the equivalent stiffness of the wheel center which meets the symmetric and positive conditions of the stiffness matrix.

Consideration of Frequency Dependent Complex Stiffness of Rubber Busings in Transmission Force Analysis of a Vehicle Suspension System (고무 부싱의 주파수 의존 복소 강성을 고려한 차량 현가 장치에서의 전달력 분석)

  • 이준화;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.34-39
    • /
    • 1998
  • In order to compute the forces which are transmitted through rubber bushings with a commercial multibody dynamic analysis (MBDA) program, a rubber bushing model is needed. The rubber bushing model of MBDA programs such as DADS or ADAMS is the Voigt model which is simply a parallel spring-viscous damper system, meaning that the damping force of the Voigt model is proportional to the frequency. However, experiments do not necessarily support this proportionality. Alternatively, the viscoelastic characteristics of rubber bushings can be better represented by the complex stiffness. The purpose of this paper is to develop a viscoelastic rubber bushing model for the MBDA programs. Firstly, a methodology is proposed to calculate the complex stiffness of rubber bushings considering static and dynamic load conditions. Secondly, a viscoelastic rubber bushing model developed which uses standard elements provided by DADS. The proposed methods are applied to the rubber bushings of the lower control arms of a rear suspension of a 1994 Ford Taurus model. Then, the forces computed for the rubber bushing model are analyzed and compared with the Voigt model in time and frequency domains.

  • PDF

The Study on noise Analysis of Bush on Suspension System (현가계 부쉬 이상소음 분식에 관한 연구)

  • Bae, Chul-Yong;Lee, Dong-Won;Kim, Chan-Jung;Lee, Bong-Hyun;Na, Byung-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.69-74
    • /
    • 2006
  • It is known that the various noise sources which are engine, transmission, tire, intake system, etc exist at vehicle driving status. Specially noises which cannot be expected by a driver induce unpleasantness to all passengers. These noises are difficult to distinguish noise sources or specifications because of too many vehicle parts. Therefore in this paper, study on abnormal noise of bush on suspension system is performed by the measurement and analysis of the noises of bushings that are generated artificially. The measured noises are analyzed by two points-view of spectrum and sound quality. Finally, it is shown that the noise sources of bushings on the suspension system which are the pillow ball joint bush of a control arm and the rubber bush of a lower arm could be distinguished by the spectrum distribution and a index value based on tonality.

  • PDF

Elastokinematic Analysis for Calculating Suspension Design Parameters (현가계 설계인자 계산을 위한 탄성기구학 해석)

  • 강주석;윤중락;배상우;이장무;탁태오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.887-890
    • /
    • 1996
  • In this study, based on the assumption that the displacements of suspension systems under the external forces are very small, a linear form of elastokinametic equations in terms of infinitesimal displacements and joint reaction forces are derived. The equations can be applied to any form of suspensions once the type of kinematic joints and bushings are identified. The validity of the method is proved through the comparison of the results from the more complex solution offered by ADAMS

  • PDF

A Study on the Optimum Design of Compliance Characteristics of Suspension System (현가계 컴플라이언스 특성의 최적 설계에 관한 연구)

  • Lee, J.M.;Kang, J.S.;Tak, T.O.;Yoom, J.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.88-97
    • /
    • 1998
  • Compliance elements such as bushings of a suspension system play a crucial role in determining the ride and handling characteristics of the vehicle. In this paper, a general procedure is proposed for the optimum design of compliance elements to meet various design targets. Based on the assumption that the displacements of elastokinematic behavior of a suspension system under external forces are very small, linearized elastokinematic equations in terms of infinitesimal displacements and joint reaction forces are derived. Directly differentiating the linear elastokinematic equations with respect to design variables associated with bushing stiffness, sensitivity equations are obtained. The design process for determining the bushing stiffness using sensitivity analysis and optimization technique is demonstrated.

  • PDF

Optimal Design of Vehicle Suspension System (차량 현가장치의 최적설계)

  • Tak, Tae-Oh;Chung, Sung-Hoon
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.43-50
    • /
    • 1999
  • Vehicle suspensions can be regarded as interconnection of rigid bodies with kinematic joints and compliance elements such as springs, bushings, and stabilizers. Design of a suspension system requires detailed specification of the interconnection point (or so called hard points) and characteristic values of compliance elements. During the design process, these design variables are determined to meet some prescribed performance targets expressed in terms of SDFs (Static Design Factors), such as toe, camber, compliance steer, etc. This paper elaborates on a systematic approach to achieve optimum design of suspension systems.

  • PDF

EFFECT OF THE FLEXIBILITY OF AUTOMOTIVE SUSPENSION COMPONENTS IN MULTIBODY DYNAMICS SIMULATIONS

  • Lim, J.Y.;Kang, W.J.;Kim, D.S.;Kim, G.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.745-752
    • /
    • 2007
  • In this study, the effects of flexible bodies in vehicle suspension components were investigated to enhance the accuracy of multibody dynamic simulation results. Front and rear suspension components were investigated. Subframes, a stabilizer bar, a tie rod, a front lower control arm, a front knuckle, and front struts were selected. Reverse engineering techniques were used to construct a virtual vehicle model. Hard points and inertia data of the components were measured with surface scanning equipment. The mechanical characteristics of bushings and dampers were obtained from experiments. Reaction forces calculated from the multibody dynamics simulations were compared with test results at the ball joint of the lower control arm in both time-history and range-pair counting plots. Simulation results showed that the flexibility of the strut component had considerable influence on the lateral reaction force. Among the suspension components, the flexibility of the sub-frame, steering knuckle and upper strut resulted in better correlations with test results while the other flexible bodies could be neglected.