• 제목/요약/키워드: Sustainable Durability Design Method

검색결과 6건 처리시간 0.021초

염해 환경하의 철근콘크리트 구조물의 친환경 내구설계 시스템 개발에 관한 연구 (A Study on the Development of Sustainable Durability Design System for Reinforced Concrete Structure under Chloride Attack Environments)

  • 김낙현;노승준;태성호
    • KIEAE Journal
    • /
    • 제11권4호
    • /
    • pp.87-94
    • /
    • 2011
  • This study was suggested to develop sustainable durability design system and proposed the plan to evaluate design conditions that meet the intended service life and $LCCO_{2}$ reduction level of reinforced concrete structure easily from the early design stage. For that the W/B and covering depth of the concrete structure were calculated through calculation of service life based on standard specification expression and the quantitative reduction rate of the vertical member of reinforced concrete structure by the calculated W/B was applied. Life cycle of building classified into construction stage, operation stage, maintenance stage, and demolition/disposal stage and the method of $CO_{2}$ evaluation of each stage was proposed. For construction stage, the major construction materials that take up over 80% $CO_{2}$ emitting during building construction were selected and the $CO_{2}$ evaluation method for 5 standard apartment houses was proposed. Also, for operation stage, $CO_{2}$ emission was calculated through calculation of heating load by energy efficiency rating certification system. For maintenance stage, $CO_{2}$ emission was calculated using concept of re-construction by life and for demolition/disposal stage was calculated with the use of construction standard estimate. As a result of the case study by such evaluation methods, 80 years of service life and 17 specifications of sustainable durability design that meet the 40% intended $LCCO_{2}$ reduction level were deduced. The Maximum $LCCO_{2}$ reduction rate was analyzed by 47.2%.

지속가능한 제품재설계를 위한 신뢰성기법의 적용방법 (Application of Reliability Technology for Sustainable Product Redesign)

  • 이종범;정원
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제9권4호
    • /
    • pp.343-349
    • /
    • 2009
  • One of the recent hot issues in the manufacturing business is how to incorporate environmental attributes into product and process design. Design for environment considers the potential environmental impact of a product throughout its life-cycle. In the case of something breaks, it can become waste immediately, hence reliability and durability is the essential part of product design. This paper presents reliability technology for sustainable product design to improve the product longevity that extends performance life, serviceability and durability. The presented method will help to develop a sound design and avoid weak links to minimize the waste.

  • PDF

Durable and Sustainable Strap Type Electromagnetic Harvester for Tire Pressure Monitoring System

  • Lee, Soobum;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.473-480
    • /
    • 2013
  • A new concept design of electromagnetic energy harvester is proposed for powering a tire pressure monitoring sensor (TPMS). The thin coil strap is attached on the circumferential surface of a rim and a permanent magnet is placed on the brake caliper system. When the wheel rotates, the relative motion between the magnet and the coil generates electrical energy by electromagnetic induction. The generated energy is stored in a storage unit (rechargeable battery, capacitor) and used for TPMS operation and wireless signal transmission. Innovative layered design of the strap is provided for maximizing energy generation. Finite Element Method (FEM) and experiment results on the proposed design are compared to validate the proposed design; further, the method for design improvement is discussed. The proposed design is excellent in terms of durability and sustainability because it utilizes the everlasting rotary motion throughout the vehicle life and does not require material deformation.

주거지에 적용된 인지건강디자인 시범사업의 유지관리 실태 연구 (A study on the management of the cognitive health design pilot projects applied to residential areas)

  • 김현주;이승지
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제27권4호
    • /
    • pp.41-50
    • /
    • 2021
  • Purpose: This study is aimed at the case of the cognitive health design pilot projects promoted by the Seoul Metropolitan Government since 2014 in terms of design to solve social problems in accordance with the aging population of our society. The purpose of this study is to analyze the maintenance and management of the projects and to suggest implications for the promotion and expansion of sustainable cognitive health design in the future. Method: It set the analysis frame by dividing management into maintenance-damage-demolition for the spatial types and spatial elements suggested in the Seoul Cognitive Health Guidelines. And it analyze the actual conditions of four pilot projects based on the field survey. Results: First, the ratio of damage and demolition was higher than maintenance. Second, designs and techniques with low durability were applied. Most of the cases where floor marks were applied to the external environment were lost or difficult to recognize, and their functions were limited due to storage of goods and parking of vehicles and motorcycles. Third, there was a large variation according to the type of residence. The project contents that can be applied to the low-rise residential area were also limited, and more elements were demolished than in the apartment type. Implications: First, it should limit project contents of space types and space elements that can be maintained even over time. Second, it should seek sustainable design and technical solutions. Third, it should seek alternatives to cognitive health design in low-rise residential areas where a large number of elderly people live.

장수명 주택의 공간구성 분석에 관한 연구 - 국내.외 사례를 중심으로 - (A Study on Interior Design Planning of Long-Life Housing - Focus on Case Studies -)

  • 김유나;공순구;주범
    • 한국실내디자인학회논문집
    • /
    • 제19권3호
    • /
    • pp.136-144
    • /
    • 2010
  • Since most domestic apartment, built in bearing wall system limiting variability of space, in spite of its good durability, cannot accept life style change and is being wasted, dumped scraps of which cause environmental pollution and waste of resources. As a response for this, researches on sustainable housing, that is, 'long-life housing' which has high durability, and variability responding life style change of the resident are in progress in and out of country. Therefore, this article aims, in suggesting the various status appearing on apartment and the interior plan responding the problem, to research on the house plan in the future which can be used continuously instead consuming type of apartment shortly used and discarded with understanding of long-life housing developed in foreign countries, and grasping the factors of application plan. Various reports from previous researches were comparatively analyzed and the studies on the characteristics, the real examples and the types of the surfaces were performed on the experimental model of long-life housing and similar residential surfaces to find the concept to be applied to Long-Life Housing and the introduction method of such concept. This article tries not only to prevent 'scarp and build', the serious cause of environmental pollution, but also to be basic materials for interior construction plan afterwards through 'long-life housing interior design plan' as the new conception which can accept life style and life cycle change.

Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment

  • Bot, Ikram Kheira;Bousahla, Abdelmoumen Anis;Zemri, Amine;Sekkal, Mohamed;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, M.H.;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.821-837
    • /
    • 2022
  • This research is devoted to study the effects of humidity and temperature on the bending behavior of functionally graded (FG) ceramic-metal porous plates resting on Pasternak elastic foundation using a quasi-3D hyperbolic shear deformation theory developed recently. The present plate theory with only four unknowns, takes into account both transverse shear and normal deformations and satisfies the zero traction boundary conditions on the surfaces of the functionally graded plate without using shear correction factors. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. The governing differential equations are obtained using the "principle of virtual work". Analytically, the Navier method is used to solve the equations that govern a simply supported FG porous plate. The obtained results are checked by comparing the results determined for the perfect and imperfect FG plates with those available in the scientific literature. Effects due to material index, porosity factors, moisture and thermal loads, foundation rigidities, geometric ratios on the FG porous plate are all examined. Finally, this research will help us to design advanced functionally graded materials to ensure better durability and efficiency for hygro-thermal environments.