• Title/Summary/Keyword: Symmetric multiprocessing

Search Result 3, Processing Time 0.018 seconds

Event Routing Scheme to Improve I/O Latency of SMP VM (SMP 가상 머신의 I/O 지연 시간 감소를 위한 이벤트 라우팅 기법)

  • Shin, Jungsub;Kim, Hagyoung
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1322-1331
    • /
    • 2015
  • According to the hypervisor scheduler, the vCPU (virtual CPU) operates under two states: the running state and the stop state. When the vCPU is in the stop state, incoming events are delayed until that vCPU's state changes to the running state. The latency in handling such events that are sent to the vCPU is regarded as the I/O latency. Since a SMP (symmetric multiprocessing) VM (virtual machine) incorporates multiple vCPUs, the event latency on a SMP VM can vary according to specific vCPU that receives the event. In this paper, we propose a new scheme named event routing that sends events according to the operation state of each vCPU to reduce the event latency on an SMP VM. We implemented the proposed event routing scheme in Xen ARM hypervisor and confirmed the reduction of I/O latency from measuring the network RTT (round trip time) and the TCP bandwidth under a variety of testing conditions. The network RTT decreases by up to 94% and the TCP bandwidth increases up to 35% when compare to native Xen ARM.

Efficient Processing of Grouped Aggregation on Non-Uniformed Memory Access Architecture (비균등 메모리 접근 구조에서의 효율적인 그룹화 집단 연산의 처리)

  • Choe, Seongjun;Min, Jun-Ki
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.14-27
    • /
    • 2018
  • Recently, to alleviate the memory bottleneck problme occurred in Symmetric Multiprocessing (SMP) architecture, Non-Uniform Memory Access (NUMA) architecture was proposed. In addition, since an aggregation operator is an important operator providing properties and summary of data, the efficiency of the aggregation operator is crucial to overall performance of a system. Thus, in this paper, we propose an efficient aggregation processing technique on NUMA architecture. Our proposed technique consists of partition phase and merge phase. In the partition phase, the target relation is partitioned into several partial relations according to grouping attribute. Thus, since each thread can process aggregation operator on partial relation independently, we prevent the remote memory access during the merge phase. Furthermore, at the merge phase, we improve the performance of the aggregation processing by letting each thread compute aggregation with a local hash table as well as avoiding lock contention to merge aggregation results generated by all threads into one.

Real-Time Implementation of Doppler Beam Sharpening in a SMP Multi-Core Kernel (대칭형 멀티코어 커널에서 DBS(Doppler Beam Sharpening) 알고리즘 실시간 구현)

  • Kong, Young-Joo;Woo, Seon-Keol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.4
    • /
    • pp.251-257
    • /
    • 2016
  • The multi-core technology has become pervasive in embedded systems. An implementation of the Doppler Beam Sharpening algorithm that improves the azimuth resolution by using doppler frequency shift is possible only in multi-core environment because of the amount of calculation. In this paper, we design of multi-core architecture for a real time implementation of DBS algorithm. And based on designed structure, we produce a DBS image on P4080 board.