• Title/Summary/Keyword: Syndecan-4

Search Result 17, Processing Time 0.03 seconds

High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains

  • Choi, Sung-Sub;Kim, Ji-Sun;Song, Jooyoung;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1120-1126
    • /
    • 2013
  • The syndecan family consists of four transmembrane heparan sulfate proteoglycans present in most cell types and each syndecan shares a common structure containing a heparan sulfate modified extracellular domain, a single transmembrane domain and a C-terminal cytoplasmic domain. To get a better understanding of the mechanism and function of syndecan-4 which is one of the syndecan family, it is crucial to investigate its three-dimensional structure. Unfortunately, it is difficult to prepare the peptide because it is membrane-bound protein that transverses the lipid bilayer of the cell membrane. Here, we optimize the expression, purification, and characterization of transmembrane, cytoplasmic and short extracellular domains of syndecan4 (syndecan-4 eTC). Syndecan-4 eTC was successfully obtained with high purity and yield from the M9 medium. The structural information of syndecan-4 eTC was investigated by MALDI-TOF mass (MS) spectrometry, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that syndecan-4 eTC had an ${\alpha}$-helical multimeric structure like transmembrane domain of syndecan-4 (syndecan-4 TM) in membrane environments.

NMR Structure of Syndecan-4L reveals structural requirement for PKC signalling

  • Koo, Bon-Kyoung;Joon Shin;Oh, Eok-Soo;Lee, Weontae
    • Proceedings of the Korean Magnetic Resonance Society Conference
    • /
    • 2002.08a
    • /
    • pp.90-90
    • /
    • 2002
  • Syndecans, transmembrane heparan sulfate proteoglycans, are coreceptors with integrin in cell adhesion process. It forms a ternary signaling complex with protein kinase C and phosphatidylinositol 4,5 bisphosphate (PIP2) for integrin signaling. NMR data indicates that cytoplasmic domain of syndecan-4 (4L) undergoes a conformational transition in the presence of PIP2, forming oligomeric conformation. The structure based on NMR data demonstrated that syndecan-4L itself forms a compact intertwined symmetric dimer with an unusual clamp shape for residues Leu$^{186}$ -Ala$^{195}$ . The molecular surface of the syndecan-4L dimer is highly positively charged. In addition, no inter-subunit NOEs in membrane proximal amino acid resides (Cl region) has been observed, demonstrating that the Cl region is mostly unstructured in syndecan-4L dimmer. However, the complex structure in the presence of PIP2 induced a high order multimeric conformation in solution. In addition, phosphorylation of cytoplasmic domain induces conformational change of syndecan-4, resulting inhibition of PKC signaling. The NMR structural data strongly suggest that PIP2 promotes oligomerization of syndecan-4 cytoplasmic domain for PKC activation and further induces structural reorganization of syndecan for mediating signaling network in cell adhesion procedure.

  • PDF

Optimization of Expression, Purification, and NMR Measurement for Structural Studies of Syndecan-4 Transmembrane Region

  • Park, Tae-Joon;Lee, Min-Hye;Choi, Sung-Sub;Kim, Yong-Ae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.1
    • /
    • pp.25-39
    • /
    • 2011
  • Syndecan-4 is a transmembrane heparan sulfate proteoglycan, which is a coreceptor with integrins in cell adhesion. To get better understand the mechanism and function of Syndecan-4, it is critical to elucidate the three-dimensional structure of a single transmembrane spanning region of them. Unfortunately, it is hard to prepare the peptide because syndecan-4 is membrane-bound protein that transverse the lipid bilayer of the cell membrane. Generally, the preparation of transmembrane peptide sample is seriously difficult and time-consuming. In fact, high yield production of transmembrane peptides has been limited by experimental adversities of insufficient yields and low solubility of peptide. Here, we demonstrate experimental processes and results to optimize expression, purification, and NMR measurement condition of Syndecan-4 transmembrane peptide.

Syndecan-4 cytoplasmic domain could disturb the multilamellar vesicle

  • Kim, Suhk-Mann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Syndecan-4 cytoplasmic domain was tested to confirm the interactions with the bilayer membrane using $^{31}P$ solid-state NMR measurements. Syndecan-4 was known as a coreceptor with integrins in the cell adhesion. The syndecan-4 V region is not understood of its functional roles and tested its ability of the interaction with multilamellar vesicles. The $^{31}P$ powder pattern was dramatically changed and showed isotropic peak which imply the bilayer membrane changed its topology to the micelle-like structure. Especially, phosphatidylcholine membrane was affected this effect more than phosphatidylethanolamine membrane.

Tissue-resident natural killer cells exacerbate tubulointerstitial fibrosis by activating transglutaminase 2 and syndecan-4 in a model of aristolochic acid-induced nephropathy

  • Wee, Yu Mee;Go, Heounjeong;Choi, Monica Young;Jung, Hey Rim;Cho, Yong Mee;Kim, Young Hoon;Han, Duck Jong;Shin, Sung
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.554-559
    • /
    • 2019
  • Despite reports suggesting that tissue-resident natural killer (trNK) cells cause ischemic kidney injury, their contribution to the development of tubulointerstitial fibrosis has not been determined. This study hypothesized that the depletion of trNK cells may ameliorate renal fibrosis by affecting transglutaminase 2/syndecan-4 interactions. Aristolochic acid nephropathy (AAN) was induced in C57BL/6 mice as an experimental model of kidney fibrosis. The mice were treated with anti-asialo GM1 (ASGM1) or anti-NK1.1 antibodies to deplete NK cells. Although both ASGM1 and NK1.1 antibodies suppressed renal $NKp46^+DX5^+$ NK cells, renal $NKp46^+DX5^-$ cells were resistant to suppression by ASGM1 or NK1.1 antibodies during the development of tubulointerstitial fibrosis in the AAN-induced mouse model. Western blot analysis showed that both antibodies increased the expression of fibronectin, transglutaminase 2, and syndecan-4. These findings indicate that trNK cells played an exacerbating role in tubulointerstitial fibrosis by activating transglutaminase 2 and syndecan-4 in the AAN-induced mouse model.

Ubiquitin Fusion System for Recombinant Peptide Expression and Purification: Application to the Cytoplasmic Domain of Syndecan-4

  • Chae, Young-Kee;Lee, Ha-Yan;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1549-1552
    • /
    • 2007
  • The cytoplasmic domain of syndecan-4, a type I transmembrane heparan sulfate proteoglycan, was overexpressed as a fused form with the ubiquitin molecule in Escherichia coli, and the fusion protein was purified using immobilized metal affinity chromatography (IMAC). The cytoplasmic domain was released from its fusion partner by using yeast ubiquitin hydrolase (YUH), and subsequently purified by reverse phase chromatography. The integrity of the resulting peptide fragment was checked by MALDI-TOF and NMR spectroscopy. The yield of the peptide was 3.0-1.5 mg per liter in LB or minimal medium, respectively. The recombinant expression and purification of this domain will enable us its structural and functional studies using multidimensional NMR spectroscopy.

Structural Effects of the GXXXG Motif on the Oligomer Formation of Transmembrane Domain of Syndecan-4

  • Song, Jooyoung;Kim, Ji-Sun;Choi, Sung-Sub;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3577-3585
    • /
    • 2013
  • Syndecan-4 (heparan sulfate proteoglycan), biologically important in cell-to-cell interactions and tumor suppression, was studied through mutation of the GXXXG motif of its transmembrane domain (Syd4-TM), a motif which governs dimerization. The expression and purification of the mutant (mSyd4-TM) were optimized here to assess the function of the GXXXG motif in the dimerization of Syd4-TM. mSyd4-TM was obtained in M9 minimal media and its oligomerization was identified by SDS PAGE, Circular Dichroism (CD) spectroscopy, mass spectrometry and NMR spectroscopy. The mutant, unlike Syd4-TM, did not form dimers and was observed as monomers. The GXXXG motif of Syd-4TM was shown to be an important structural determinant of its dimerization.

Structural Change in Transmembrane Region of Syndecan-4 by Mutation

  • Choi, Sung-Sub;Kim, Ji-Sun;Jeong, Ji-Ho;Kim, Yongae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.4
    • /
    • pp.129-137
    • /
    • 2016
  • Transmembrane(TM) proteins are closely related to transport, channel formation, signaling, cell to cell interaction, so they are the crucial target of modern medicinal drugs. In order to study the structure and function of these TM proteins, it is important to prepare reasonable amounts of proteins. However, their preparation is seriously difficult and time-consuming due to insufficient yields and low solubility of TM proteins. We tried to produce large amounts of Syndecan-4 containing TM domain(SDC4-TM) that is related to the wound healing and tumor. Also, mutated SDC4-TM was studied to investigate structural change by modification of dimerization motif. We performed the structure determination by the Polarity Index at Slanted Angle (PISA) wheel pattern analysis based on $^{15}N-^1H$ 2D SAMPI-4 solid-state NMR of SDC4-TM and computational modeling using Discovery Studio 2016.

Structure Determination of Syndecan-4 Transmembrane Domain using PISA Wheel Pattern and Molecular Dynamics simulation

  • Choi, Sung-Sub;Jeong, Ji-Ho;Kim, Ji-Sun;Kim, Yongae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.2
    • /
    • pp.58-62
    • /
    • 2014
  • Human transmembrane proteins (hTMPs) are closely related to transport, channel formation, signaling, cell to cell interaction, so they are the crucial target of modern medicinal drugs. In order to study the structure and function of these hTMPs, it is important to prepare reasonable amounts of proteins. However, their preparation is seriously difficult and time-consuming due to insufficient yields and low solubility of hTMPs. We tried to produce large amounts of Syndecan-4 transmembrane domain (Syd4-TM) that is related to the healing wounds and tumor for a long time. In this study, we performed the structure determination of Syd4-TM combining the Polarity Index at Slanted Angle (PISA) wheel pattern analysis based on $^{15}N-^1H$ 2D SAMPI-4 solid-state NMR of expressed Syd4-TM and Molecular Dynamics (MD) simulation using Discovery Studio 3.1.

Heteronuclear NMR studies on 44 kDa dimer, syndesmos

  • Kim, Heeyoun;Lee, Inhwan;Han, Jeongmin;Cheong, Hae-kap;Kim, Eunhee;Lee, Weontae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.83-87
    • /
    • 2015
  • Syndesmos, which is co-localized with syndecan-4 cytoplasmic domain ($Syn4^{cyto}$) in focal contacts, interacts with various cell adhesion adaptor proteins including $Syn4^{cyto}$ to control cell signaling. Syndesmos consists of 211 amino acids and it exists as a dimer (44kDa) in solution. Recently, we have determined the structure of syndesmos by x-ray crystallography, however, dynamics related to syndecan binding still remain elusive. In this report, we performed NMR experiments to acquire biochemical and structural information of syndesmos. Based on a series of three-dimensional triple resonance experiments on a $^{13}C/^{15}N/^2H$ labeled protein, NMR spectra were obtained with well dispersed and homogeneous NMR data. We present the sequence specific backbone assignment of syndesmos and assigned NMR data with combination structural information can be directly used for the studies on interaction with $Syn4^{cyto}$ and other binding molecules.