• Title/Summary/Keyword: Syngas-air Flame

Search Result 29, Processing Time 0.027 seconds

Stability Characteristics of Syngas($H_2$/CO)/Air Premixed Flames using an Impinging Jet Burner (충돌제트 버너에서 합성가스($H_2$/CO)/공기 예혼합화염의 안정화 특성)

  • Park, Ju-Yong;Lee, Kee-Man;Hwang, Cheol-Hong
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • An experimental study was conducted to investigate the flame stability of the synthetic gas (syngas) using an impinging premixed jet burner. Since the syngas mainly consisted of $H_2$ and CO, the $H_2$/CO mixture was simulated as the syngas. $H_2$/CO mixture ratios, fuel/air mixture velocities and equivalence ratios were used as major parameters on the flame stabilitym The role of the impinging plate on the flame stability was also examined. In addition, laminar burning velocities of the $H_2$/CO mixture were predicted numerically to understand the characteristics of the flame stability for the syngas. The increase in the H2 concentration into the syngas brings about the extension of the blowout limit and the reduction in the flashback limit in terms of the stable flame region. The impinging jet plate broadened the blowout limit but does not play important role in changing of the flashback limit. Finally, it was found that the stability region of the flame using the syngas, which is expressed in terms of the mixture velocity and the equivalence ratio in this study, significantly differed from that of $CH_4$.

Stability of Attached Flame in $H_2$/CO Syngas Non-premixed Turbulent Jet Flame ($H_2$/CO 합성가스 비예혼합 난류 제트화염에서 부착화염의 화염안정화)

  • Hwang, Jeong-Jae;Bouvet, Nicolas;Sohn, Ki-Tae;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.22-29
    • /
    • 2012
  • The detachment stability characteristics of syngas $H_2$/CO jet attached flames were studied. The flame stability was observed while varying the syngas fuel composition, coaxial nozzle diameter and fuel nozzle rim thickness. The detachment stability limit of the syngas single jet flame was found to decrease with increasing mole fraction of carbon monoxide in the fuel. In hydrogen jet flames with coaxial air, the flame detachment stability was found to be independent of the coaxial nozzle diameter. However, velocities of appearance of liftoff and blowout velocities of lifted flames have dependence. At lower fuel velocity range, the critical coaxial air velocity leading to flame detachment increases with increasing fuel jet velocity, whereas at higher fuel velocity range, it decreases. This increasing-decreasing non-monotonic trend appears for all $H_2$/CO syngas compositions (50/50~100/0% $H_2$/CO). To qualitatively understand the flame behavior near the nozzle rim, $OH^*$ chemiluminescence imaging was performed near the detachment limit conditions. For all fuel compositions, local extinction on the rim is observed at lower fuel velocities(increasing stability region), while local flame extinction downstream of the rim is observed at higher fuel velocities(decreasing stability region). Maximum values of the non-monotonic trends appear to be identical when the fuel jet velocity is normalized by the critical fuel velocity obtained in the single jet cases.

Measurement of Laminar Flame Speed of Syngas(H2/CO)/Air Premixed Flame using the Bunsen Burner Method (분젠 버너법을 이용한 합성가스(H2/CO)/공기 예혼합화염의 층류 연소속도 측정)

  • Jeong, Byeonggyu;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.181-183
    • /
    • 2012
  • Syngas laminar flame speed measurements were carried out at atmospheric pressure and ambient temperature using the Bunsen flame configuration with nozzle burner as a fundamental study on flame stability of syngas. Representative syngas mixture compositions ($H_2:CO$) such as 25:75%, 50:50% and 70:25% and equivalence ratios from 0.5 to 1.4 were investigated. The measured laminar flame speeds were in good agreement with the previous numerical data as well as experimental data available in the literatures over a wide range of equivalence ratio tested. It was reconfirmed that the laminar flame speed gradually increased with the increase in $H_2$ content in a fuel mixture. In particular, the significant increasing rate of flame speed was observed with the increase in equivalence ratio.

  • PDF

Experimental Study on the Flame Behavior and the NOx Emission Characteristics of Low Calorific Value Gas Fuel (저 발열량 가스 연료의 화염거동 및 NOx 발생 특성에 관한 실험적 연구)

  • Kim, Yong-Chul;Lee, Chan
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.89-93
    • /
    • 1999
  • Experimental studies are conducted to investigate the flame stability and the thermal/fuel NOx formation characteristics of the low calorific value(LCV) gas fuel. Synthetic LCV fuel gas is produced through mixing carbon monoxide, hydrogen, nitrogen and ammonia on the basis that the thermal input of the syngas fuel into a burner is identical to that of natural gas, and then the syngas mixture is fed to and burnt with air on flat flame burner. Flame behaviors are observed to identify flame instability due to blow-off or flash-back when burning the LCV fuel gas at various equivalence ratio conditions. Measurements of NOx in combustion gas are made for comparing thermal and fuel NOx emissions from the LCV syngas combustion with those of the natural gas one, and for analyzing ammonia to NOx conversion mechanism. In addition, the nitrogen dilution of the LCV syngas is preliminarily attempted as a NOx reduction technique.

  • PDF

Experimental Study on Role of Syngas Addition on Flame Propagation and Stability in DME-Air Premixed Flames (디메틸에테르-공기 예혼합화염의 화염전파와 화염안정성에 있어서 합성가스의 첨가효과에 관한 실험적 연구)

  • Song, Wonsik;Park, Jeong;Gwon, O-Bung;Yun, Jin-Han;Gil, Sang-In;Kim, Tae-Hyeong;Kim, Yeong-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.207-209
    • /
    • 2012
  • The present experiment was conducted to measure the unstretched laminar burning velocity and cellular instability of DME-air and syngas (in steps of 25 %) added DME-air premixed flames using propagating spherical flame. The experimental results were discussed in two focuses which are effects of syngas fraction and initial pressure on Markstein length, unstretched laminar burning velocities, and cellular instability. The flame instability was evaluated by the Markstein length and cellularity which is caused by diffusional-thermal instability and hydrodynamic instability.

  • PDF

A Study on the Emission Characteristics of Syngas(H2/CO)-Air Premixed Flame according to the H2 contents (수소 함유량에 따른 합성가스(H2/CO)-공기 예혼합 화염의 배출특성 연구)

  • Jeong, Byeong;Choi, Jongmin;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.9-10
    • /
    • 2013
  • This study reports the results of an experimental investigation of emission and temperatures from the syngas-air premixed flame with a various mixture composition in the region of large equivalence ratios. The effects of hydrogen contents and equivalence ratios on the flame velocity, which reported before, and emission of syngas fuel are examined. In this study, representative syngas mixture compositions ($H_2:CO$) such as $H_2:CO=10:90$, 25:75, 50:50 and 75:25 and equivalence ratios from 0.5 to 5.0 have been conducted. The emissions of syngas fuel were measured by the high precision analyzer with enclosure configuration and the adiabatic temperatures are calculated by used Chemkin basis. The NOx emission level is coincided relatively well with the adiabatic temperature distributions in lean mixture conditions, but for rich mixture conditions NOx level was also increased again even though the adiabatic temperature decreases. Such an increasing characteristics in rich mixture conditions is coincided well with the tendency that rather the flue gas temperature increases.

  • PDF

Experimental Study on Effects of Syngas Addition in Flame Propagation and Stability of DME-Air Premixed Flames (디메틸에테르-공기 예혼합화염의 화염전파와 화염안정성에 있어서 합성가스의 첨가효과에 관한 실험적 연구)

  • Song, Wonsik;Park, Jeong;Kwon, Ohboong;Yun, Jinhan;Kee, Sangin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.44-50
    • /
    • 2012
  • The present study was conducted to investigate the flame instability(evaluated by Markstein length and cellular instability) and laminar burning velocity in a constant volume combustion chamber at room temperature and elevated pressure up to 0.3 MPa to suggest the possibility of utilizing mixtures of syngas added DME-air premixed flames in internal combustion engines. The experimentally measured laminar burning velocities were compared to predictions calculated the PREMIX code with Zhao reaction mechanism. Discussions were made on effects of syngas addition into DME-Air premixed flames through evaluating laminar burning velocity, Markstein length, and cellular instability. Particular concerns are focused on cellular instability caused by hydrodynamic instability and diffusive-thermal instability.

Effects of Diluents on Cellular Instabilities in Outwardly Propagating Spherical Syngas-Air Premixed Flames

  • Vu, Tran Manh;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.191-196
    • /
    • 2009
  • Experiments were conducted in a constant pressure combustion chamber using schlieren system to investigate the effects of carbon dioxide/nitrogen/helium diluents on cellular instabilities of syngas-air premixed flames at room temperature and elevated pressures. Laminar burning velocities and Markstein lengths were calculated by analyzing high-speed schlieren images at various diluent concentrations and equivalence ratios. Experimental results showed substantial reduction of the laminar burning velocities and of the Markstein lengths with the diluent additions in the fuel blends. Effective Lewis numbers of helium-diluted syngas-air flames increased but those of carbon dioxide- and nitrogen-diluted syngas-air flames decreased in increase of diluents in the reactant mixtures. With helium diluent, the propensity for cells formation was significantly diminished, whereas the cellular instabilities for carbon dioxide-diluted and nitrogen-diluted syngas-air flames were not suppressed.

  • PDF

Numerical Analysis for the Detailed Structure of Syngas Turbulent Nonpremixed Flames (석탄가스 난류비예혼합 화염장의 해석)

  • Lee, Jeong-Won;Kim, Chang-Hwan;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.775-778
    • /
    • 2007
  • The present study numerically investigate the detailed structure of the syngas diffusion flames. In order to realistically represent the turbulence-chemistry interaction, the transient flamelet model has been applied to simulate the combustion processes and $NO_X$ formation in the syngas turbulent nonpremixed flames. The single mixture fraction formulation is extended to account for the effects of the secondary inlet mixture. Computations are the wide range of syngas compositions and oxidizer dilutions. Based on numerical results, the detailed discussion has been made for the effects of syngas composition and oxidizer dilution on the structure of the syngas-air and syngas-oxygen turbulent nonpremixed flames.

  • PDF

A Study on the Laminar Burning Velocity of Synthetic Gas of Coal Gasification(H2/CO)-Air Premixed Flames (석탄가스화 합성가스(H2/CO)-공기 예혼합화염의 층류 연소속도에 관한 연구)

  • Jeong, Byeonggyu;Lee, Keeman
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.493-502
    • /
    • 2012
  • Syngas laminar burning velocity measurements were carried out at atmospheric pressure and ambient temperature using the Bunsen flame configuration with nozzle burner as a fundamental study on flame stability of syngas fuel. Representative syngas mixture compositions ($H_2$:CO) such as 25:75%, 50:50% and 75:25% and equivalence ratios from 0.5 to 1.4 have been conducted. Average laminar burning velocities have been determined by the stabilized nozzle burner flames using the angle method, radical surface area method and compared with the data obtained from the other literatures. And the results of each experimental methodologies in the various composition ratios and equivalence ratios were coincided with the result of numerical simulation. Especially, it was confirmed that there was necessary to choice a more accurate measurement methodology even the same static flame method for the various composition ratios of syngas fuel including hydrogen. Also, it was reconfirmed that the laminar burning velocities gradually increased with the increasing of hydrogen content in a fuel mixture.