• Title/Summary/Keyword: System Safety Engineering

Search Result 7,531, Processing Time 0.037 seconds

Effects of Communication Company's Safety Management System on Workers' Safety Consciousness and Safety Observance Behavior

  • Byun, Kwang-Seup;Jung, JIn-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.120-129
    • /
    • 2021
  • In this study, the effect of a telecommunication company's safety management system on workers' safety awareness and safety behavior was empirically verified. The main findings are as follows: First, among the factors of the telecommunication company's safety management system, the management supervisor's capability and level of industrial accident investigations were found to have a significant positive effect on workers' safety awareness. Second, workers' safety awareness was observed to exert a significant positive effect on their safety behavior. Third, among the factors of the telecommunication company's safety management system, the management supervisor's capability and industrial accident investigations were found to have a significant positive effect on the safety behavior of workers. Fourth, although the telecommunications safety management system factors, such as management supervisors' capability and industrial accident investigations, were found to have a positive effect on workers' safety awareness, they had no mediated effect on workers' safety behavior through safety awareness.

A Study on the Effect of Organizational Safety and Health Management Activities on Safety and Health Performance : Focusing on the Case of Public Organizations Safety Activity Level Evaluation (조직의 안전보건경영 활동이 안전보건 성과에 미치는 영향 연구 : 공공기관 안전활동 수준평가 사례 중심으로)

  • Seol, Mun-Su;Lee, Joon-Won;Park, Man-Su;So, Hansub;Kim, Byung-Jick
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.132-139
    • /
    • 2021
  • The purpose of this study is to investigate the effect of organizational safety and health management activities on safety and health performance by using the results of safety activity level evaluation of public organizations. To this end, a research model was established by using three fields as independent variables among the four areas of the safety activity level evaluation index: safety and health system, safety and health activity plan, and safety and health activity level, and the safety and health activity performance field as a dependent variable. Correlation analysis and regression analysis between major variables were performed. As a result of the correlation analysis, the safety and health activity performance had a significant positive (+) correlation with all of the safety and health system, safety and health activity plan, and safety and health activity level. The safety and health system had a significant positive (+) correlation with the safety and health activity plan and safety and health activity level, and the safety and health activity plan had a significant positive (+) correlation with the safety and health activity level. And as a result of the regression analysis, it was found that the organization's safety and health system, safety and health activity plan, and safety and health activity level all had a significant positive (+) effect on safety and health activity performance.

Development of Standard Guideline and Process for Safety Design using DMADOV of the Lean 6 Sigma (린 6시그마 DMADOV를 이용한 시스템 안전설계 표준지침 및 프로세스 구축)

  • Kim, Hyung-Kwan;Park, Do-Hyun;Huh, Hyoung-Jo;Sung, Won-Hyuk
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.97-106
    • /
    • 2015
  • System is the organization of hardware, software, personnel and facilities needed to perform a designated function within a stated environment with specified results. The trend of modern systems is getting more complex and larger. The system is necessary for modern society but the minor malfunction of the system can result the enormous human and material losses. Recently it is being heightened the concern for system safety and required to be built and applied Safety Engineering standard Guideline for safety of complex and large-sized system. This paper describes the System Engineering Process model integrated with Safety Engineering and the establishment of standard safety guidelines for safety of product development using DMADOV Methodology of the Lean 6 Sigma.

Integration of Systems Engineering and System Safety Analysis for Developing CBTC System (CBTC 시스템 개발을 위한 시스템엔지니어링과 안전성 분석의 통합)

  • 박중용;박영원
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • This article proposes an integrated systems engineering and safety analysis model for safety-critical systems development. A methodology in system design for safety is considered during the early phase of the development life cycle of systems engineering process. The evolution of the design automation technology has enabled engineers to perform the model-based systems engineering. A Computer-Aided Systems Engineering(CASE) tool, CORE, is utilized to integrate the systems engineering model with a system safety analysis model. The results of the functional analysis phase can drive the analysis of the system safety. An example of Communications-Based Train Control(CBTC) system for an Automated Guided Transit(AGT) system demonstrated an application of the integrated model.

A Study on the Safety Requirements Establishment through System Safety Processes (시스템 안전성평가를 통한 효율적 요건 도출방안 연구)

  • Yoo, Seung-woo;Jung, Jinpyong;Yi, Baeck-Jun
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.29-34
    • /
    • 2013
  • Safety requirements for aircraft and system functions include minimum performance constraints for both availability and integrity of the function. These safety requirements should be determined by conducting a safety assessment. The depths and contents of aircraft system safety assessment vary depending on factors such as the complexity of the system, how critical the system is to flight safety, what volume of experience is available on the type of system and the novelty and complexity of the technologies being used. Requirements that are defined to prevent failure conditions or to provide safety related functions should be uniquely identified and traceable through the levels of development. This will ensure visibility of the safety requirements at the software and electronic hardware design level. This paper has prepared to study on promoting the efficiency of establishing hierarchical safety requirements from aircraft level function to item level through system safety processes.

Development of HPMA System for the Voluntary Safety Management of the Paint Industry (도료산업의 자육안전관리를 위한 HPMA 시스템 개발)

  • Mok, Yun-Soo;Chang, Seong-Rok;Ock, Young-Seok;Chun, Seung-Hyun;Lee, Seong-Jon;Lee, Chang-Eon
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.124-129
    • /
    • 2003
  • We developed a HPMA Information System to establish the voluntary safety management for the Paint Industry. HPMA System means that manager, supervisor and worker on the process-line find out the hazardous and/or unsafe potentials, make improvement of the field safety by the cooperation with top manager, safety staff and eventually put in the practice. HPMA Information System consists of functions to suggest and evaluate the safety concerns hierarchically from top manager to workers on internet or intranet. We establish the safety management and sharing of the safety information and are able to find the unsafe potentials by the HPMA Information System. Also We are able to mine new safety information and establish accident prevention model by the Safety DATABASE.

Establishment of a Safety Inspection System for Public Institutions Ordered Construction Projects (건설공사 발주 공공기관의 안전점검 체계구축에 관한 연구)

  • Eung Ho Park;Sudong Lee;Kihyo Jung
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.3
    • /
    • pp.55-62
    • /
    • 2023
  • Public institutions have a responsibility to ensure the safety of their employees and the public. One way to do this is to implement a systematic safety inspection system based on risk assessments and continuous improvements. This study developed a systematic safety inspection system for public institutions that are ordered construction projects. The proposed system in this study consists of a three-step process: (1) developing safety grade evaluation tables, (2) preparing and conducting safety inspections, and (3) evaluating and improving safety management grades. The first step is to develop safety grade evaluation tables by analysis and diagnosis of the construction site's work type, disaster statistics, and related laws. The second step is to conduct safety inspections using the developed evaluation tables. The third step is to determine the safety management grade based on the results of the safety inspection, and to improve risk factors found during the safety evaluation. The proposed system was implemented in highway construction projects carried out by public institutions. The results showed that the proposed system has two major effects: (1) reducing accident-related deaths and injuries, (2) improving safety management levels by continuous evaluation and improvement. The proposed system can be utilized in construction projects ordered by public institutions to improve the level of occupational safety and health.

A System Dynamics View of Safety Management in Small Construction Companies

  • Guo, Brian H.W.;Yiu, Tak Wing;Gonzalez, Vicente A.
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • Due to unique characteristics of small construction companies, safety management is comprised of complex problems. This paper aims to better understand the complexity and dynamics of safety management in small construction companies. A system dynamics (SD) model was built in order to capture the causal interdependencies between factors at different system levels (regulation, organization, technical and individual) and their effects on safety outcomes. Various tests were conducted to build confidence in the model's usefulness to understand safety problems facing small companies from a system dynamics view. A number of policies were analyzed by changing the value of parameters. The value of a system dynamics approach to safety management in small construction companies is its ability to address joint effects of multiple safety risk factors on safety performance with a systems thinking perspective. By taking into account feedback loops and non-linear relationships, such a system dynamics model provides insights into the complex causes of relatively poor safety performance of small construction companies and improvement strategies.

A System Dynamics View of Safety Management in Small Construction Companies

  • Guo, Brian H.W.;Yiu, Tak Wing;Gonzalez, Vicente A.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.92-96
    • /
    • 2015
  • Due to unique characteristics of small construction companies, safety management is comprised of complex problems (e.g., resources constraints, a lack of formalized management structures, low level of management safety commitment etc.). In order to understand causal interdependencies between safety factors at different system levels (regulation, organization, technical and individual), this paper aims to develop a system dynamics (SD) model of safety management in small construction companies. The purpose of the SD model is to better understand why small construction companies have low level of safety performance. A causal loop diagram (CLD) was developed based on literature, with an attempt to map causal relationships between variables. The CLD was then converted into stock and flow diagram for simulation. Various tests were conducted to build confidence in the model's ability to represent the reality. A number of policies were analyzed by changing the value of parameters. The value of a system dynamics approach to safety management in small construction companies is its ability to address joint effects of multiple safety risk factors on safety performance with a systems thinking perspective. By taking into account feedback loops and non-linear relationships, such a system dynamics model provides insights into the complex causes of relatively poor safety performance of small construction companies and improvement strategies.

  • PDF

Safety Analysis and Design Model for a Complex System like ATM(Air Traffic Management) System (ATM(Air Traffic Management) 시스템과 같은 복잡 시스템의 안전 분석 및 설계 모델)

  • Park, Joong-Yong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • A complex system like ATM(Air Traffic Management) has safety problem emerging from complex interactions between systems. In complex systems, malfunctions of components are not the only causes of critical accidents. To resolve this problem many researchers have proposed new safety analysis models for complex systems. This research is a way of improving safety analysis model focusing on systems engineering design model for ATM.

  • PDF