• Title/Summary/Keyword: Systematic errors

Search Result 369, Processing Time 0.035 seconds

Self-calibration Algorithm of Systematic Errors For Interferometer (간섭계에 있어서의 계통 오차의 자율 교정 알고리즘)

  • Ikumatsu Fujimoto;Lee Taeyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.63-71
    • /
    • 2005
  • When an almost flat surface under test is measured by an interferometer, the measurement result is largely influenced by systematic errors that include geometrical errors of a reference flat surface. To determine the systematic errors of the interferometer by the conventional method that is called the three flat method, we must take the reference flat surface out from the interferometer and measure it. Because of difficulties to set the reference flat surface to the interferometer exactly and quickly, this method is not practical. On the other hand, the method that measures a surface under test with some shifts in the direction being perpendicular to the optical axis of the interferometer is studied. However, the parasitic pitching, rolling and up-down movement caused by the above shifts brings serious error to the measurement result, and the algorithm by which the influences can be eliminated is not still established. In this paper, we propose the self-calibration algorithm for determining the systematic errors that include geometrical errors of a reference flat surface by several rotation shifts and a linear shift of general surface under test, and verify by a numerical experiment that this algorithm is useful for determining the systematic errors.

Investigating the Impact of Random and Systematic Errors on GPS Precise Point Positioning Ambiguity Resolution

  • Han, Joong-Hee;Liu, Zhizhao;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.233-244
    • /
    • 2014
  • Precise Point Positioning (PPP) is an increasingly recognized precisely the GPS/GNSS positioning technique. In order to improve the accuracy of PPP, the error sources in PPP measurements should be reduced as much as possible and the ambiguities should be correctly resolved. The correct ambiguity resolution requires a careful control of residual errors that are normally categorized into random and systematic errors. To understand effects from two categorized errors on the PPP ambiguity resolution, those two GPS datasets are simulated by generating in locations in South Korea (denoted as SUWN) and Hong Kong (PolyU). Both simulation cases are studied for each dataset; the first case is that all the satellites are affected by systematic and random errors, and the second case is that only a few satellites are affected. In the first case with random errors only, when the magnitude of random errors is increased, L1 ambiguities have a much higher chance to be incorrectly fixed. However, the size of ambiguity error is not exactly proportional to the magnitude of random error. Satellite geometry has more impacts on the L1 ambiguity resolution than the magnitude of random errors. In the first case when all the satellites have both random and systematic errors, the accuracy of fixed ambiguities is considerably affected by the systematic error. A pseudorange systematic error of 5 cm is the much more detrimental to ambiguity resolutions than carrier phase systematic error of 2 mm. In the $2^{nd}$ case when only a portion of satellites have systematic and random errors, the L1 ambiguity resolution in PPP can be still corrected. The number of allowable satellites varies from stations to stations, depending on the geometry of satellites. Through extensive simulation tests under different schemes, this paper sheds light on how the PPP ambiguity resolution (more precisely L1 ambiguity resolution) is affected by the characteristics of the residual errors in PPP observations. The numerical examples recall the PPP data analysts that how accurate the error correction models must achieve in order to get all the ambiguities resolved correctly.

Advanced Relative Localization Algorithm Robust to Systematic Odometry Errors (주행거리계의 기구적 오차에 강인한 개선된 상대 위치추정 알고리즘)

  • Ra, Won-Sang;Whang, Ick-Ho;Lee, Hye-Jin;Park, Jin-Bae;Yoon, Tae-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.931-938
    • /
    • 2008
  • In this paper, a novel localization algorithm robust to the unmodeled systematic odometry errors is proposed for low-cost non-holonomic mobile robots. It is well known that the most pose estimators using odometry measurements cannot avoid the performance degradation due to the dead-reckoning of systematic odometry errors. As a remedy for this problem, we tty to reflect the wheelbase error in the robot motion model as a parametric uncertainty. Applying the Krein space estimation theory for the discrete-time uncertain nonlinear motion model results in the extended robust Kalman filter. This idea comes from the fact that systematic odometry errors might be regarded as the parametric uncertainties satisfying the sum quadratic constrains (SQCs). The advantage of the proposed methodology is that it has the same recursive structure as the conventional extended Kalman filter, which makes our scheme suitable for real-time applications. Moreover, it guarantees the satisfactoty localization performance even in the presence of wheelbase uncertainty which is hard to model or estimate but often arises from real driving environments. The computer simulations will be given to demonstrate the robustness of the suggested localization algorithm.

Virtual In-situ Sensor Calibration and the Application in Unitary Air Conditioners (유닛형 공기조화기 센서의 가상보정 방법 및 적용 특성 분석)

  • Yoon, Sungmin;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.65-72
    • /
    • 2018
  • Since data-driven building technologies have been widely applied to building energy systems, the accuracy of building sensors has more impacts on the building performance and system performance analysis. Various building sensors, however, can have typical errors including a random error (noise) and a systematic error (bias). The systematic error is indicated by the difference between the mean of measurements and their true value. It may occur due to the sensor's physical condition, measured phenomena, working environments inside the systems. Unfortunately, a conventional calibration method has limitations in calibrating the systematic errors because of the difference between working environments and calibration conditions. In such situations, a novel sensor calibration method is needed to handle various sensor errors, especially for systematic errors, in building energy systems having various thermodynamic environments. This study proposes a building sensor calibration method named Virtual In-situ Calibration (VIC) and shows how it is applied into a real building system and how it solves the sensor errors.

Healthcare Professionals Involved in Medical Errors and Support Systems for Them: A Literature Review (오류를 경험한 의료인에 대한 연구 동향 및 지원 시스템)

  • Jang, Haena;Lee, Nam-Ju
    • Perspectives in Nursing Science
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Purpose: The purpose of this study was to identify the current state of research on healthcare professionals who make medical errors, who are known as "second victims", and support systems for them. Methods: An extensive search was conducted in electronic databases, Google, and websites related to patient safety using search terms such as "second victims", "medical errors", "adverse events", and "sentinel events". Results: Research to date in Korea has rarely focused on healthcare professionals' experiences after making medical errors. Abroad, there are comprehensive and systematic reviews of the impact of medical errors on healthcare professionals, their coping responses, and support systems for these second victims. Additionally, several institutes related to patient safety provide official guidelines and accessible support systems to support second victims in the aftermath of medical errors, especially serious adverse events. Conclusion: The impact of medical errors on healthcare professionals is profound and complex. Although systematic support systems for second victims are imperative, this has been overlooked in Korea. Thus, more research about the experiences of healthcare professionals after medical errors needs to be conducted prior to developing support systems or programs. Additionally, further efforts are required to raise awareness of the necessity of supporting healthcare professionals in healthcare systems.

A study on matching correlation analysis of multi-scale satellite images data for change detection (변화추출을 위한 다중영상자료의 정합상관도 분석을 위한 연구)

  • 이성순;윤희천;강준묵
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.221-226
    • /
    • 2004
  • For comparing more than two images, the precise geometric corrections should be preceded because it necessary to eliminate systematic errors due to basic sensor information difference and non-systematic errors due to topographical undulations. In this study, we did sensor modeling using satellite sensor information to make a basic map of change detection for artificial topography. We eliminated the systematic errors which can be occurred in photographing conditions using GCP and DEM data. The Kompsat EOC images relief could be reduced by precise rectification method. Classifying images which was used for change detections by city and forest zone, the accuracy of the matching results are increased by 10% and the positioning accuracies also increased.

  • PDF

Experience and Perception on Patient Safety Culture of Employees in Hospitals (환자안전 문화에 대한 의료 종사자의 인식과 경험)

  • Kim, Eun-Kyung;Kim, Hui-Jeong;Kang, Min-Ah
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.13 no.3
    • /
    • pp.321-334
    • /
    • 2007
  • Purpose: The objectives of this study were to understand and compare perception and experience between clinical staffs(nurses and pharmacists) and Quality Improvement managers. Method: A qualitative study was conducted with 14 clinical staffs and QI managers who are working at tertiary hospitals in Korea. Interviews were recorded and transcribed for systematic analyses of qualitative data. Results: Most critically, while QI managers acknowledged that establishment of the patient safety culture and reduction of medical errors are urgent tasks for QI effort, clinical staffs don't seem to share such perceptions. All participants agree that staff shortage and no compliance to safety procedures were major reasons for medical error occurrences. Many suggested that an organizational culture where errors were perceived as a systematic problems rather than individual failures or carelessness should be formed to promote voluntary reporting of medical errors. Conclusion: A more systematic effort and attention at the hospital leadership and public policy level should be promoted to constitute societal consensus on the urgence of promoting patient safety culture and more specific approaches to tackle the patient safety problems.

  • PDF

Experimental Investigations of Systematic Errors in Wind Tunnel Testing Using Design of Experiments (실험설계법 기반 풍동시험 시스템 오차 검출 실험연구)

  • Oh, Se-Yoon;Park, Seung-O;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.335-341
    • /
    • 2013
  • The variation of systematic bias errors in the wind tunnel testing has been studied. A Design of Experiments(DOE) approach to an experimental study of fuselage drag and stability characteristics of a helicopter configuration was applied. When forces and moments measured in one time block differ significantly from measurements made in another time block under assumption that sample observations can be expected to yield same results within permissible measuring errors. The practical implication of this paper is that the systematic error can not be assumed not to exist. The those error reduction could be achieved through the process of randomization, blocking, and replication of the data points.

EVALUATION OF THE MEASUREMENT NOISE AND THE SYSTEMATIC ERRORS FOR THE KOMPSAT-1 GPS NAVIGATION SOLUTIONS

  • Kim Hae-Dong;Kim Eun-Kyou;Choi Hae-Jin
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.278-280
    • /
    • 2004
  • GPS Navigation Solutions are used for operational orbit determination for the KOMPSAT-1 spacecraft. GPS point position data are definitely affected by systematic errors as well as noise. Indeed, the systematic error effects tend to be longer term since the GPS spacecrafts have periods of 12 hours. And then, the overlap method of determining orbit accuracy is always optimistic because of the presence of systematic errors with longer term effects. In this paper, we investigated the measurement noise and the system error for the KOMPSAT-l GPS Navigation Solutions. To assess orbit accuracy with this type of data, we use longer data arcs such as 5-7 days instead of 30 hour data arc. For this assessment, we should require much more attention to drag and solar radiation drag parameters or even general acceleration parameters in order to assess orbit accuracy with longer data arcs. Thus, the effects of the consideration of the drag, solar radiation drag, and general acceleration parameters were also investigated.

  • PDF

A Computer-Aided Design Checking System for Mechanical Drawings Drawn with CAD Systems (CAD시스템을 이용하여 작성한 도면의 설계검증)

  • 이성수;소야민랑
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.847-851
    • /
    • 1994
  • Existing CAD systems do not provide the advanced function for systematic checking of design and drafting errors in mechanical drawings. This paper describes a method for systematic checking in mechanical drawings. The checking items are deficiency and redundancy of dimensions, input-errors in dimension figures and symbols, etc. Checking for deficiency and redundancy of global dimensions has been performed applying Graph Theory. This system has been applied to several examples and we have confirmed the feasibility of this design checking method.

  • PDF