• Title/Summary/Keyword: T-open set

Search Result 91, Processing Time 0.027 seconds

ON FUZZY MAXIMAL, MINIMAL AND MEAN OPEN SETS

  • SWAMINATHAN, A.;SIVARAJA, S.
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.1_2
    • /
    • pp.79-84
    • /
    • 2022
  • We have observed that there exist certain fuzzy topological spaces with no fuzzy minimal open sets. This observation motivates us to investigate fuzzy topological spaces with neither fuzzy minimal open sets nor fuzzy maximal open sets. We have observed if such fuzzy topological spaces exist and if it is connected are not fuzzy cut-point spaces. We also study and characterize certain properties of fuzzy mean open sets in fuzzy T1-connected fuzzy topological spaces.

MINIMAL P-SPACES

  • Arya, S.P.;Bhamini, M.P.
    • Kyungpook Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 1987
  • Minimal s-Urysohn and minimal s-regular spaces are studied. An s-Urysohn (respectively, s-regular) space (X, $\mathfrak{T}$) is said to be minimal s-Urysohn (respectively, minimal s-regular) if for no topology $\mathfrak{T}^{\prime}$ on X which is strictly weaker than $\mathfrak{T}$, (X, $\mathfrak{T}^{\prime}$) is s-Urysohn (respectively s-regular). Several characterizations and other related properties of these classes of spaces have been obtained. The present paper is a study of minimal P-spaces where P refers to the property of being an s-Urysohn space or an s-regular space. A P-space (X, $\mathfrak{T}$) is said to be minimal P if for no topology $\mathfrak{T}^{\prime}$ on X such that $\mathfrak{T}^{\prime}$ is strictly weaker than $\mathfrak{T}$, (X, $\mathfrak{T}^{\prime}$) has the property P. A space X is said to be s-Urysohn [2] if for any two distinct points x and y of X there exist semi-open set U and V containing x and y respectively such that $clU{\bigcap}clV={\phi}$, where clU denotes the closure of U. A space X is said to be s-regular [6] if for any point x and a closed set F not containing x there exist disjoint semi-open sets U and V such that $x{\in}U$ and $F{\subseteq}V$. Throughout the paper the spaces are assumed to be Hausdorff.

  • PDF

REGULAR GLOSED BOOLEAN ALGBRA IN THE SPACE WITH EXTENSION TOPOLOGY

  • Cao, Shangmin
    • The Pure and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.71-78
    • /
    • 2000
  • Any Hausdoroff space on a set which has at least two points a regular closed Boolean algebra different from the indiscrete regular closed Boolean algebra as indiscrete space. The Sierpinski space and the space with finite complement topology on any infinite set etc. do the same. However, there is $T_{0}$ space which does the same with Hausdorpff space as above. The regular closed Boolean algebra in a topological space is isomorphic to that algebra in the space with its open extension topology.

  • PDF

A Note on S-closed Space and RC-convergence. (S-closed 공간(空間)과 RC 수렴(收斂)에 관하여)

  • Han, Chun-Ho
    • Journal of Industrial Technology
    • /
    • v.5
    • /
    • pp.47-49
    • /
    • 1985
  • Semi-open을 기초로 하여 만들어진 S-closed 공간의 일반적인 성질을 살펴보고 S-closed 공간과 (maximum) filterbase와의 관계를 조사하였다. 이를 바탕으로 regular closed된 cover C, regular open set인 족(族) C, rc-accumulation, (maximum) filterbase에서의 관계(關係)를 살펴 보았다. Mapping theory에서 almost-open almost-continuous map f가 almost continuous되는 것을 보였다.

  • PDF

SEMI-QUASITRIANGULARITY OF TOEPLITZ OPERATORS WITH QUASICONTINUOUS SYMBOLS

  • Kim, In-Hyoun;Lee, Woo-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • In this note we show that if $T_{\varphi}$ is a Toeplitz operator with quasicontinuous symbol $\varphi$, if $\omega$ is an open set containing the spectrum $\sigma(T_\varphi)$, and if $H(\omega)$ denotes the set of analytic fuctions defined on $\omege$, then the following statements are equivalent: (a) $T_\varphi$ is semi-quasitriangular. (b) Browder's theorem holds for $f(T_\varphi)$ for every $f \in H(\omega)$. (c) Weyl's theorem holds for $f(T_\varphi)$ for every $f \in H(\omega)$. (d) $\sigma(T_{f \circ \varphi}) = f(\sigma(T_varphi))$ for every $f \in H(\omega)$.

  • PDF

ON BROWDER'S THEOREM

  • Lee, Dong Hark
    • Korean Journal of Mathematics
    • /
    • v.10 no.1
    • /
    • pp.11-17
    • /
    • 2002
  • In this paper we give several necessary and sufficient conditions for an operator on the Hilbert space to obey Browder's theorem. And it is shown that if S has totally finite ascent and $T{\prec}S$ then $f(T)$ obeys Browder's theorem for every $f{\in}H({\sigma}(T))$, where $H({\sigma}(T))$ denotes the set of all analytic functions on an open neighborhood of ${\sigma}(T)$.

  • PDF

Corrigendum to "On Soft Topological Space via Semi-open and Semi-closed Soft Sets, Kyungpook Mathematical Journal, 54(2014), 221-236"

  • Al-shami, Tareq Mohammed
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.583-588
    • /
    • 2018
  • In this manuscript, we show that the equality relations of the two assertions (ix) and (x) of [Theorem 2.11, p.p.224] in [3] do not hold in general, by giving a concrete example. Also, we illustrate that Example 6.3, Example 6.7, Example 6.11, Example 6.15 and Example 6.20 do not satisfy a soft semi $T_0$-space, a soft semi $T_1$-space, a soft semi $T_2$-space, a soft semi $T_3$-space and a soft semi $T_4$-space, respectively. Moreover, we point out that the three results obtained in [3] which related to soft subspaces are false, by presenting two examples. Finally, we construct an example to illuminate that Theorem 6.18 and Remark 6.21 made in [3] are not valid in general.

Performance Improvement and Power Consumption Reduction of an Embedded RISC Core

  • Jung, Hong-Kyun;Jin, Xianzhe;Ryoo, Kwang-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.78-84
    • /
    • 2012
  • This paper presents a branch prediction algorithm and a 4-way set-associative cache for performance improvement of an embedded RISC core and a clock-gating algorithm with observability don’t care (ODC) operation to reduce the power consumption of the core. The branch prediction algorithm has a structure using a branch target buffer (BTB) and 4-way set associative cache that has a lower miss rate than a direct-mapped cache. Pseudo-least recently used (LRU) policy is used for reducing the number of LRU bits. The clock-gating algorithm reduces dynamic power consumption. As a result of estimation of the performance and the dynamic power, the performance of the OpenRISC core applied to the proposed architecture is improved about 29% and the dynamic power of the core with the Chartered 0.18 ${\mu}m$ technology library is reduced by 16%.

A NOTE ON S-CLOSED SPACES

  • Woo, Moo-Ha;Kwon, Taikyun;Sakong, Jungsook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.95-97
    • /
    • 1983
  • In this paper, we show a necessary and sufficient condition for QHC spaces to be S-closed. T. Thomson introduced S-closed spaces in [2]. A topological space X is said to be S-closed if every semi-open cover of X admits a finite subfamily such that the closures of whose members cover the space, where a set A is semi-open if and only if there exists an open set U such that U.contnd.A.contnd.Cl U. A topological space X is quasi-H-closed (denote QHC) if every open cover has a finite subfamily whose closures cover the space. If a topological space X is Hausdorff and QHC, then X is H-closed. It is obvious that every S-closed space is QHC but the converse is not true [2]. In [1], Cameron proved that an extremally disconnected QHC space is S-closed. But S-closed spaces are not necessarily extremally disconnected. Therefore we want to find a necessary and sufficient condition for QHC spaces to be S-closed. A topological space X is said to be semi-locally S-closed if each point of X has a S-closed open neighborhood. Of course, a locally S-closed space is semi-locally S-closed.

  • PDF