• Title/Summary/Keyword: TGA steam oxidation

Search Result 11, Processing Time 0.028 seconds

Thermodynamic and experimental analyses of the oxidation behavior of UO2 pellets in damaged fuel rods of pressurized water reactors

  • Jung, Tae-Sik;Na, Yeon-Soo;Joo, Min-Jae;Lim, Kwang-Young;Kim, Yoon-Ho;Lee, Seung-Jae
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2880-2886
    • /
    • 2020
  • A small leak occurring on the surface of a fuel rod due to damage exposes UO2 to a steam atmosphere. During this time, fission gas trapped inside the fuel rod leaks out, and the gas leakage can be increased due to UO2 oxidation. Numerous studies have focused on the steam oxidation and its thermodynamic calculation in UO2. However, the thermodynamic calculation of the UO2 oxidation in a pressurized water reactor (PWR) environment has not been studied extensively. Moreover, the kinetics of the oxidation of UO2 pellet also has not been investigated. Therefore, in this study, the thermodynamics of UO2 oxidation under steam injection due to a damaged fuel rod in a PWR environment is studied. In addition, the diminishing radius of the UO2 pellet with time in the PWR environment was calculated through an experiment simulating the initial time of steam injection at the puncture.

Kinetics Study on the Reduction with Methane, Oxidation with Water and Oxidation with Air of Fe2O3/ZrO2 Using TGA (TGA를 이용한 Fe2O3/ZrO2의 환원/물 분해/공기산화 kinetic 연구)

  • Nam, Hyun-Woo;Kang, Kyoung-Soo;Bae, Ki-Kwang;Kim, Chang-Hee;Cho, Won-Chul;Kim, Young-Ho;Park, Chu-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.168-177
    • /
    • 2011
  • A set of kinetics study on the reduction with $CH_4$, oxidation with steam and oxidation with air was performed for $Fe_2O_3/ZrO_2$. $Fe_2O_3/ZrO_2$ was prepared by aerial oxidation method. The reactivity experiments were performed in a thermogravimetric analyzer (TGA) with different reacting gas concentrations and temperatures. The obtained activation energy of reduction by methane, oxidation by water and oxidation by air are 219 kJ/mol, 238 and 20 respectively.

High Purity Hydrogen Production by Redox Cycle Operation (산화-환원 싸이클 조업에 의한 고순도 수소생성)

  • Jeon, Bup-Ju;Park, Ji-Hun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.

Effect of Partial Oxidation of Wood and RDF in a Fluidized Bed (유동상 반응로 조건에서 목재와 RDF 부분 산화의 영향)

  • Kim, Tae-Hyun;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.23-32
    • /
    • 2008
  • Gasification characteristics in the fluidized bed reactor are essential for the design of a gasification furnace to optimize the operation condition. Moisture content of the solid fuel is one of the important factors to influence directly the gasification characteristics. So it is necessary to investigate the effect of moisture content of solid fuel in partial oxidation condition. Gasification characteristics are investigated with results from thermogravimetric analyzer and lab-scale fluidized bed reactor for wood and RDF samples along with changing moisture contents. Additionally lab-scale fluidized bed reactor was run continuously and gas concentrations at the exit were measured. It is observed that the rate of reaction in partial oxidation condition is between the results from the combustion environment and from the inert condition. Moisture content in a particle slows down the heating rate of a particle. So, reaction is delayed by the moisture content. However, RDF samples those are easy to break-up don't show the effect of moisture content. The result of continuous operation condition shows that proper moisture content promotes gasification because steam from the particles helps gasification of the solid fuel. A simulation to predict the syn-gas composition was conducted by the Aspen Plus process simulator. The cold gas efficiency of the experiment was compared with results from the simulation.

  • PDF

Effectiveness of Ni-based and Fe-based cladding alloys in delaying hydrogen generation for small modular reactors with increased accident tolerance

  • Alan Matias Avelar;Fabio de Camargo;Vanessa Sanches Pereira da Silva;Claudia Giovedi;Alfredo Abe;Marcelo Breda Mourao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.156-168
    • /
    • 2023
  • This study investigates the high temperature oxidation behaviour of a Ni-20Cr-1.2Si (wt.%) alloy in steam from 1200 ℃ to 1350 ℃ by Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD). The results demonstrate that exposed Ni-based alloy developed a thin oxide scale, consisted mainly of Cr2O3. The oxidation kinetics obtained from the experimental results was applied to evaluate the hydrogen generation considering a simplified reactor core model with different cladding alloys following an unmitigated Loss-Of-Coolant Accident (LOCA) scenario in a hypothetical Small Modular Reactor (SMR). Overall, experimental data and simulations results show that both Fe-based and Ni-based alloys may enhance cladding survivability, delaying its melting, as well as reducing hydrogen generation under accident conditions compared to Zr-based alloys. However, a substantial neutron absorption occurs when Ni-based alloys are used as cladding for current uranium-dioxide fuel systems, even when compared to Fe-based alloys.

Ultrasonic Immersion-steam Cleaning and High Temperature Drying Process for Removing Cutting Oil on Titanium Turning Scraps (타이타늄 터닝 스크랩 내 절삭유 제거를 위한 초음파 침지-스팀 및 고온 건조 공정)

  • Chae, Jikwang;Yoo, Suhwan;Oh, Jung-Min;Lim, Jae-Won
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.60-65
    • /
    • 2021
  • The recycling of titanium turning scraps requires the removal of cutting oil and other contaminants remaining on the surface. In this study, an experiment was conducted in which titanium scraps were cleaned by a combination of ultrasonic immersion-steam cleaning and subsequent drying at high temperature. To determine the removal mechanism of cutting oil, the contact angle between titanium surface and cutting oil was measured. The result confirmed the optimum condition of the immersion solution of the titanium turning scraps. In the case of immersion cleaning of Na4P2O7 aqueous solution, the degree of carbon removed in the cutting oil was the highest at 50℃, and it was confirmed that the carbon content obtained from the combination of steam cleaning and ultrasonic immersion-steam cleaning was lower than that from steam cleaning after ultrasonic immersion. The oxidation and decomposition behaviors of cutting oil were investigated using Thermogravimetric analysis (TGA) and the result was applied in the high temperature drying process. From the results of the high temperature drying tests, it was concluded that 200℃ is the optimal drying temperature.

Effect of Partial Oxidation of Wood and RDF in a Fluidized Bed (유동상 반응로 조건에서 목재와 RDF 부분가스화의 영향)

  • Kim, Tae-Hyun;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.161-167
    • /
    • 2007
  • Gasification characteristics in the fluidized bed reactor are essential for the design of a gasification furnace to optimize the operation condition. Moisture content of the solid fuel is one of the important factors to influence directly the gasification characteristics. So it is necessary to investigate the effect of moisture content of solid fuel in gasification process. Gasification characteristics are investigated with results from thermogravimetric analyser and lab-scale fluidized bed reactor for wood and RDF samples along with changing moisture contents. Additionally lab-scale fluidized bed reactor was run continuously and gas concentrations at the exit were measured. It is observed that the rate of reaction in partial oxidation condition is in between the results from the combustion environment and from the inert condition. Moisture content in a particle slows down the heating rate of a particle. So, reaction time is delayed by the moisture content. However, RDF samples that are easy to break-up doesn't show the effect of moisture content. The results of continuous operation condition shows that proper moisture content promotes gasification because steam from the particles helps gasifcation of the sold fuel.

  • PDF

Activity Changes of Supported Nickel Catalysts with Respect to Ni Loading (니켈 담지촉매의 니켈 담지량에 따른 활성 변화)

  • Kim, Sang-Bum;Park, Eun-Seok;Cheon, Han-Jin;Kim, Young-Kook;Kim, Myung-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.230-236
    • /
    • 2003
  • Synthesis gas is commercially produced by a steam reforming process. However, the process is highly endothermic and energy-consuming. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at $750{\sim}850^{\circ}C$ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and $H_2$ and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best $MgNiO_2$ solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.

Effect of Support on Synthesis Gas Production of Supported Ni Catalysts (니켈 담지촉매를 이용한 합성가스 제조 시 담체의 영향)

  • Kim, Sang-Bum;Park, Eun-Seok;Cheon, Han-Jin;Kim, Young-Kook;Lim, Yun-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.289-295
    • /
    • 2003
  • Synthesis gas is produced commercially by a steam reforming process. However, the process is highly endothermic and energy intensive. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to cut down the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at $750{\sim}850^{\circ}C$ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and $H_2$ and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best $MgNiO_2$ solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.

Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature (Ni/Al2O3 촉매를 사용한 에틸렌글리콜의 수증기 개질 반응: 촉매 제조 방법과 환원온도의 영향)

  • Choi, Dong Hyuck;Park, Jung Eun;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.372-381
    • /
    • 2015
  • The effect of preparation method on the catalytic activities of the $Ni/Al_2O_3$ catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, $K_2CO_3$, and $NH_4OH$ were compared. The prepared catalysts were characterized by using $N_2$ physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperatureprogrammed reduction, pulsed $H_2$ chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH or $K_2CO_3$ as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature.