• Title/Summary/Keyword: TGV-K

Search Result 48, Processing Time 0.024 seconds

TGV MEDITERRANEE

  • Devaux, Georges;Farabet, Roger
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.17-26
    • /
    • 2003
  • 67% of TGV growth. 1/4 of TGV takings. 1/5 of TGV customers. 14, 1 Millions passengers (87% between Paris and Mediterranee)(omitted)

  • PDF

Collision Analysis of the Full Rake TGV-K on Crashworthiness (TGV-K 전체 차량의 충돌안전도 해석 연구)

  • Koo, Jeong-Seo;Song, Dahl-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.1 no.1 s.1
    • /
    • pp.1-9
    • /
    • 1998
  • Described in this paper is the result of a study on collision analysis of TGV-K using 1-dimensional model for crashworthy design. Crashworthy design of the front end is very important because majority of the impact energy (more than 70%) is absorbed by the crush of the front end when the train is collided with an obstacle like a tank lorry. Guideline for the crashworthy design can be described from the collision analysis of the whole train using a 1-dimensional model. Since the headstock of TGV-K is not designed in a crashworthy point of view, a conceptual design of the headstock to improve crashworthiness is suggested and evaluated using 1-dimensional collision analysis. The suggested design, which adopts an energy absorber and a crashworthy headstock, shows a good behaviour on the accident scenario of SNCF (collision at 110 km/h against a movable rigid mass of 15 ton).

  • PDF

Longitudinal Dynamic Behavior of KASR-Bridge Installed Creep-Couplers (Creep-Coupler가 설치된 KHSR 교량으 종방향 동적거동)

  • 곽종원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.111-116
    • /
    • 2000
  • 경간사이에 creep-coupler가 설치된 경부 고속철도 교량에 TGV-K 열차의 제동에 의한 교량의 종방향 동적거동을 해석하였다. 교량은 40m 길이의 2경간 연속교이며, 종방향 충격 하중을 인접 경간 혹은 교대로 전달하기 위한 목적으로 인접하고 있는 두 교량 사이의 creep-coupler가 설치되었다. 철도교의 경우에는 레일에 대한 종방향 축력검토가 매우 중요하므로, 이를 지지하고 있는 교량의 하부구조(교각과 기초)의영 향을 고려한 교량의 동적거동해석이 요구된다. 본 연구에서는 TGV-K의 실제 제동하중에 의한 KHSR(Korea high speed railway)에 건설중인 실제교량의 동해석을 하부구조와 동특성치를 고려하여 수행하였다. TGV-K는 객차사이에 대차가 위치하므로 전체 열차의 모델링이 한꺼번에 이루어 져야한다. 동핵석을 위해서 열차의 3차원 수치모델링이 이루어졌다. TGV-K의 제동은 동력차의 전기적인 제동에 의한 회생제동력(regenerative braking force)과 객착의 기계적인 판제동(disk braking)으로 이루어진다. 이러한 제동작용의 고려에 실제 TGV-K의 제동함수가 사용되었다.

  • PDF

Analysis of the Dynamic Stability for the K-TGV Using Vampire Program (Vampire를 이용한 경부고속철도 차량의 동적 안정성 해석)

  • 박찬경;김기환;홍진완;심태웅
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.510-516
    • /
    • 1998
  • Dynamic stability of a high speed train is very important. This paper presents a dynamic stability analysis of K-TGV using Vampire Program. The analysis of stability on this paper is performed in condition of track irregularity, curved track and strong gust. The critical speed of K-TGV is 140m1s, and it is stable when runs on 7000R(cant 150mm) curved track and on linear track with the body exerted 101kN lateral impulse force.

  • PDF

Earthquake Response Analysis of K-TGV against El Centro Earthquake (경부 고속철도차량의 El Centro 지진에 대한 지진응답해서)

  • 김준희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.435-442
    • /
    • 2000
  • In this thesis the dynamic behavior of the vehicles is analyzed while the track is subjected to lateral vibration due to earthquakes. A computer program is developed which can simulate dynamic responses of vehicles subjected to earthquake loading. The analysis considers two types of two types of vehicles : I. e. a 2-axle vehicle with 13 DOF's an da power car of K-TGV with 38 DOF's It can also consider the interaction with substructures such as tracks and bridges. El Centro record is considered as earthquake loading. The creep force module developed in this study is verified and the results of this study are compared with those of others. Furthermore he running safety of high-speed railway vehicles(K-TGV) subjected to earthquake loading is studied. Based on the results of this study the running safety of the K-TGV can be confirmed against el centro earthquake.

  • PDF

Collision Analysis of Full Rake TGV-K for crashworthy design (고속전철 TGV-K 전체 차량에 대한 충돌안전도 해석 연구)

  • 구정서;송달호
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.361-368
    • /
    • 1998
  • Described in this paper is the result of a study on collision analysis of TGV-K using 1-dimensional model for crashworthy design. Crashworthy design of the front end is very important because majority of the impact energy (more than 70%) is absorbed by the crush of the front end when the train is collided with an obstacle like a tank lorry. Guideline for the crashworthy design can be described from the collision analysis of the whole train using a 1-dimensional model. Since the headstock of TGV-K is not designed in a crashworthy point of view, a conceptual design of the headstock to improve crashworthiness is suggested and evaluated using 1-dimensional collision analysis. The suggested design, which adopts an energy absorber and a crashworthy headstock, shows a good behaviour on the accident scenario of SNCF (collision at 110 km/hr against a movable rigid mass of 15 ton).

  • PDF

A Study on Performance of TGV-K Current Collection System for the Speed-up (속도 향상을 위한 고속전철 TGV-K 집전시스템의 성능에 관한 연구)

  • Hur, S.;Kyung, J.H.;Han, H.S.;Song, D.H.
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.533-539
    • /
    • 1998
  • Described in this paper are the dynamic model and the dynamic performance of catenary-pantograph system for TGV-K(maximum operating speed of 300km/hr). Dynamic simulations showed that the system satisfies the performance criteria such as contact loss ratio, contact force and lift-off of the contact wire. It is also shown by the simulations that the dynamic behavior and contact performance of the system at the operating speed of 350km/hr are found unacceptable. Design parameters of the catenary-pantograph system should be optimized for the speed-up of the TGV-K.

  • PDF

2-Dimensional Analysis of Full Rake TGV-K on Crashworthiness (고속전철 TGV-K 전체 차량의 2차원 충돌해석)

  • 구정서;송달호
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.545-552
    • /
    • 1998
  • A study on collision analysis of TGV-K using a 2-dimensional model is described to evaluate its crashworthiness. Two-dimensional analysis gives good information on overriding behaviour and impact forces applied to interconnecting devices such as side buffers, ball & socket joints, hooks, pins, and fingers. Since the headstock of TGV-K is not designed in a crashworthy point of view, its conceptual design fur KHST(Korean High Speed Train), under development, is suggested to improve crashworthiness. The suggested design, which adopts an energy absorber and a crashworthy headstock, is compared with the conventional headstock on dynamic behaviour to the vertical direction under the accident scenario of SNCF (collision at 110km/h against a movable rigid mass of 15 ton). It is concluded that the design modification make little difference in vertical motion. To evaluate validation of the 2-dimensional model, the results fur longitudinal motion is compared with those of 1-dimemsional one. It is found that the two results are in good agreements.

  • PDF

A Study on Crashworthiness for the Front Structure of TGV (고속전철 TGV-K 전두부의 충돌안전도에 관한 연구)

  • 노규석;김유일;구정서;송달호
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.369-376
    • /
    • 1998
  • For a good crashworthy design of train vehicles, it is essential to develop some design and analysis techniques for energy absorbing structures. This paper analyzes the front structure of TGV-K and suggests crashworthy design of Korea high speed tram(KHST) using the accident scenario of SNCF(collision with a stationary rigid mass in motion of 15 ton at 110km/h). Specifically this research is concentrated on developing a well-designed protective headstocks using mullticell structures wi th cutouts to improve crashworthiness of KHST

  • PDF

Power Conversion Unit for Propulsion System of the High Speed Train (고속전철 추진시스템의 전력변환장치)

  • 이병송;변윤섭;백광선
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.39-45
    • /
    • 1999
  • This paper presents the current-fed inverter of a TGV-K traction system with thyristor switches using phase control and commutation techniques. The current-fed inverters have two modes of operation which consist of forced commutation and natural commutation. In forced commutation mode, at speed of less than 120km/h, commutation is forced by means of the commutation capacitors and the thyristors. Above 120km/h, the thyristors operate in natural commutation mode. according to the voltages between phases of the motors. In this paper. the power conversion theory of the TGV-K traction system and the control principle of the converter and current-fed inverter are discussed.

  • PDF