• Title/Summary/Keyword: THD

Search Result 706, Processing Time 0.027 seconds

Model Predictive Control of Bidirectional AC-DC Converter for Energy Storage System

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.165-175
    • /
    • 2015
  • Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.

A CMOS Analog Front End for a WPAN Zero-IF Receiver

  • Moon, Yeon-Kug;Seo, Hae-Moon;Park, Yong-Kuk;Won, Kwang-Ho;Lim, Seung-Ok;Kang, Jeong-Hoon;Park, Young-Choong;Yoon, Myung-Hyun;Yoo, June-Jae;Kim, Seong-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.769-772
    • /
    • 2005
  • This paper describes a low-voltage and low-power channel selection analog front end with continuous-time low pass filters and highly linear programmable-gain amplifier(PGA). The filters were realized as balanced Gm-C biquadratic filters to achieve a low current consumption. High linearity and a constant wide bandwidth are achieved by using a new transconductance(Gm) cell. The PGA has a voltage gain varying from 0 to 65dB, while maintaining a constant bandwidth. A filter tuning circuit that requires an accurate time base but no external components is presented. With a 1-Vrms differential input and output, the filter achieves -85dB THD and a 78dB signal-to-noise ratio. Both the filter and PGA were implemented in a 0.18um 1P6M n-well CMOS process. They consume 3.2mW from a 1.8V power supply and occupy an area of $0.19mm^2$.

  • PDF

Low power 3rd order single loop 16bit 96kHz Sigma-delta ADC for mobile audio applications. (모바일 오디오용 저 전압 3 차 단일루프 16bit 96kHz 시그마 델타 ADC)

  • Kim, Hyung-Rae;Park, Sang-Hune;Jang, Young-Chan;Jung, Sun-Y;Kim, Ted;Park, Hong-June
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.777-780
    • /
    • 2005
  • 모바일 오디오 적용을 위한 저전력 ${\Sigma}{\Delta}$ Modulator 에 대한 설계와 layout 을 보였다. 전체 구조는 3 차 단일 피드백 루프이며, 해상도는 16bit 을 갖는다. 샘플링 주파수에 따른 Over-sampling Ratio 는 128(46kHz) 또는 64(96kHz) 가 되도록 하였다. 차동 구조를 사용한 3 차 ${\Sigma}{\Delta}$ modulator 내의 적분기에 사용된 Op-Amp 는 DC-Gain 을 높이기 위해서 Gain-boosting 기법이 적용되었다. ${\Sigma}{\Delta}$ modulator 의 기준 전압은 전류 모드 Band-Gap Reference 회로에서 공급이 되며, PVT(Process, Voltage, Temperature) 변화에 따른 기준 전압의 편차를 보정하기 위하여, binary 3bit 으로 선택하도록 하였다. DAC 에서 사용되는 단위 커패시터의 mismatch 에 의한 성능 감소를 막기 위해, DAC 신호의 경로를 임의적으로 바꿔주는 scrambler 회로를 이용하였다. 4bit Quantizer 내부의 비교기 회로는 고해상도를 갖도록 설계하였고, 16bit thermometer code 에서 4bit binary code 변환시 발생하는 에러를 줄이기 위해 thermometer-to-gray, gray-to-binary 인코딩 방법을 적용하였다. 0.18um CMOS standard logic 공정 내 thick oxide transistor(3.3V supply) 공정을 이용하였다. 입력 전압 범위는 2.2Vp-p,diff. 이며, Typical process, 3.3V supply, 50' C 시뮬레이션 조건에서 2Vpp,diff. 20kHz sine wave 를 입력으로 할 때 SNR 110dB, THD 는 -95dB 이상의 성능을 보였고, 전류 소모는 6.67mA 이다. 또한 전체 layout 크기는 가로 1100um, 세로 840um 이다.

  • PDF

Modelling a Stand-Alone Inverter and Comparing the Power Quality of the National Grid with Off-Grid System

  • Algaddafi, Ali;Brown, Neil;Rupert, Gammon;Al-Shahrani, Jubran
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Developments in power electronics have enabled the widespread application of Pulse Width Modulation (PWM) inverters, notably for connecting renewable systems to the grid. This study demonstrates that a high-quality power can be achieved using a stand-alone inverter, whereby the comparison between the power quality of the stand-alone inverter with battery storage (off-grid) and the power quality of the utility network is presented. Multi-loop control techniques for a single phase stand-alone inverter are used. A capacitor current control is used to give active damping and enhance the transient and steady state inverter performance. A capacitor current control is cheaper than the inductor current control, where a small current sensing resistor is used. The output voltage control is used to improve the system performance and also control the output voltage. The inner control loop uses a proportional gain current controller and the outer loop is implemented using internal model control proportional-integral-derivative to ensure stability. The optimal controls are achieved by using the Sisotool tool in MATLAB/Simulink. The outcome of the control scheme of the numerical model of the stand-alone inverter has a smooth and good dynamic performance, but also a strong robustness to load variations. The numerical model of the stand-alone inverter and its power quality are presented, and the power quality is shown to meet the IEEE 519-2014. Furthermore, the power quality of the off-grid system is measured experimentally and compared with the grid power, showing power quality of off-grid system to be better than that of the utility network.

Three-phase Four-wire Series Active Power Filter Control Strategy for The Compensation of Harmonics and Reactive Power Based-on Direct Compensating Voltage Extraction Method (직접 보상전압 추출기법을 이용하여 고조파전류와 무효전력을 보상하는 3상 4선식 직렬 형 능동전력필터의 제어법)

  • 김진선;김영석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.213-221
    • /
    • 2004
  • In recent years, since more and more diode rectifiers with smoothing dc capacitor are used in electronic equipments, household appliances and ac drives, harmonics generated by these loads have become a major issue. In addition, 3-phase 4-wire system is widely employed in distributing electric energy to several office building and manufacturing plants. This systems show excessive currents in the neutral. These neutral currents are fundamentally third harmonic, and their presence is tied to wiring failure, elevating of neutral potentials, transformer overheating, etc. In response to the concerns, this paper proposes a series active power filter scheme based on direct compensating voltage extraction method and the advantage of this control algorithm is direct extraction of compensation voltage reference without multiplying gain. Therefore, the calculation of the compensation voltage reference will becom much simpler than other control algorithm. To verify the effectiveness of the proposed algorithm, a prototype active power filter is built and some experiments are carried out.

A Study on High Efficiency Inverter Ballast Using Microprocessor (마이크로프로세서를 사용한 고효율 인버터 안정기에 관한 연구)

  • 정재륜
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.88-94
    • /
    • 1999
  • This paper describes the high efficiency inverter ballast circuit using very cheap microprocessor, which has been developed by the author. A variety of soft-switching techniques have been proposed to reduce the switching losses and EMI publems that accur with higher switching frequencies in switched inverter ballast 1be inverter ballast circuit, which employs a temperature sensing circuits has been also proposed to improve starting performance of the fluorescent lamps. That is, the inverter ballast circuit, which employs a soft-starting circuits and soft-switching techniques to implement the power factoc correcticn and to mitigate of power-loss and iocrease a life time of the fluorescent lamps, has become an attractive performance forballasting the fluorescent lamps. In this paper, the operation and the control of the inverter ballast are described in detail and experimental results are presented. As the experimental results, when enviroment temperatture is at TEX>$-40^{\circ}C$, the inverter ballast circuit has low THD(4.8%) of the input current and large power factor(98%) of the lamp current. The proposed improved ballast circuit awears to be a good performance for ballasting fluorescent lamps. lamps.

  • PDF

Robust Double Deadbeat Control of Single-Phase UPS Inverter (단상 UPS 인버터의 강인한 2중 데드비트제어)

  • 박지호;허태원;안인모;이현우;정재륜;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.65-72
    • /
    • 2001
  • This paper deals with a novel full digital control of the single-phase PWM(Pulse Width Modulation) inviter for UPS(Uninterruptible Power Supp1y). The voltage and current of output filter capacitor as a state variable are the feedback control input. In the proposed scheme a double deadbeat control consisting of minor current control loop and major voltage control loop have been developed In addition, a second order deadbeat currents control which should be exactly equal to its reference in two sampling time without error and overshoot is proposed to remove the influence of the calculation time delay. The load current prediction is achieved to compensate the load disturbance. The simulation and experimental result shows that the proposed system offers an output voltage with THD(Total Harmonic Distortion) less than 5% at a full nonlinear load.

  • PDF

Actual Conditions of Voltage and Current Harmonics on Low-voltage Power Systems Supplying Various Facilities (각종 시설물 전원계통의 전압과 전류고조파 실태)

  • Lee, Bok-Hee;Baek, Young-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.62-70
    • /
    • 2005
  • This paper presents the actual conditions and reform measures of voltage and current harmonics being made in low-voltage power systems supplying various loads. The measurements were carried out at the secondary output terminals of 22.9[kV]/380[V]220[V] customer's transformers, and the results were discussed on the basis of the comparison with IEEE and IEC harmonics control standards. The voltage THDs of the power systems employed in this survey were less than $5[\%]$ that is considered to be acceptable. On the contrary, the current distortions were significantly greater than the voltage distortions, and the current THDs were distributed over the wide-range from 15.7 to $60.4[\%]$. In particular, the current distortion on the low voltage power lines of office buildings in which many PC and fluorescent lamps are used is remarkably more serious than that of factory facilities. As a result, the voltage distortion factors are observed within the range of its allowable level or less than the limits, but the current distortion factors are significantly greater than the limits of IEEE and IEC standards.

A Single-Phase DC-AC Inverter Using Two Embedded Z-Source Converters (2대의 임베디드 Z-소스 컨버터를 이용한 단상 DC-AC 인버터)

  • Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1152-1162
    • /
    • 2011
  • In this paper, a single-phase DC-AC inverter using two embedded Z-source converters is proposed. The proposed inverter is composed of two embedded Z-source converters with common DC source and output AC load. The output AC voltage of the inverter is obtained by the difference of output capacitor voltages of each converter. The output voltage of each converter take shape of the asymmetrical AC waveform centering zero voltage. Therefore, the proposed inverter can generate the same output voltage despite low VA rating L-C elements, compared to the conventional inverter using high DC voltage with AC ripple. To verify the validity of the proposed system, the PSIM simulation was achieved under the condition of rapid increase of DC source (110[V]${\rightarrow}$150[V]) and R-load (50[${\Omega}$]${\rightarrow}$300[${\Omega}$]). For controlling the voltage of the inverter system, the one-cycle controller was adopted. As results, the proposed inverter output the constant AC voltage (220[V]rms/60[Hz]) for all conditions. Also, the R-L load and nonlinear diode load were adopted for the proposed inverter loads, and we could know that the its output voltage characteristics were as good as the pure R-load. Finally, the RMS and THD of output AC voltage were examined for the different loads, input DC voltages and reference voltage signals.

An improvement of cycloconverter output using phase shifting filter (상천이 필터를 이용한 싸이클로컨버터 출력의 개선)

  • Kim, Jong-Su;Seo, Dong-Hoan;Kim, Jeong-Woo;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.121-126
    • /
    • 2013
  • Cycloconverter used as a power conversion device in the speed and torque control system of AC machines has the advantage of a simple control and a large torque at low speed. In addition, because a rectifier, a DC link, and an inverter are not installed, this system is simple and suitable for large power system. If a power conversion device, which is currently used as a propulsion motor of large vessel, is changed into cycloconverter, the system is simplified and then the installation costs can be significantly reduced. However, conventional cycloconverter has the increased harmonics because the power loss is large and the waveform of output voltage is distorted, due to the high-speed switching of power semiconductor devices. In order to improve these shortcomings, this paper describes a phase shifting filter which is composed of two inputs with different phases in the primary side and one output in the secondary one. As the voltage waveforms with two different phases are added and transformed into the secondary side, these outputs are close to sinusoidal waves. Thereby the voltage waveforms, which are applied to the propulsion motors, are improved and total harmonic distortions (THDs) are significantly reduced.