• Title/Summary/Keyword: TLR4

Search Result 304, Processing Time 0.026 seconds

In Silico Evaluation of Deleterious SNPs in Chicken TLR3 and TLR4 Genes

  • Shin, Donghyun;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.45 no.3
    • /
    • pp.209-217
    • /
    • 2018
  • The innate immune recognition is based on the detection of microbial products. Toll-like receptors (TLRs) located on the cell surface and the endosome senses microbial components and nucleic acids, respectively. Chicken TLRs mediate immune responses by sensing ligands from pathogens, have been studied as immune adjuvants to increase the efficacy of vaccines. Single nucleotide polymorphisms (SNPs) of TLR3 and TLR4 genes in chicken were associated with resistance and susceptibility to viral infection. In this study, SNPs of chTLR3 and chTLR4 genes were retrieved from public database and annotated with chicken reference genome. Three-dimensional models of the chTLR3 and chTLR4 proteins were built using a Swiss modeler. We identified 35 and 13 nsSNPs in chTLR3 and chTLR4 genes respectively. Sorting Intolerant from Tolerant (SIFT) and Polymorphism Phenotyping v2 (Polyphen-2) analyses, suggested that, out of 35 and 13 nsSNPs, 4 and 2 SNPs were identified to be deleterious in chTLR3 and chTLR4 gene respectively. In chTLR3, 1 deleterious SNP was located in ectodomain and 3 were located in the Toll / IL-1 receptor (TIR) domain. Further structural model of chTLR3-TIR domain suggested that 1 deleterious SNP be present in the B-B loop region, which is important for TIR-TIR domain interactions in the downstream signaling. In chTLR4, the deleterious SNPs were located both in the ectodomain and TIR domain. SNPs predicted for chTLR3 and chTLR4 in this study, might be related to resistance or susceptible to viral infection in chickens. Results from this study will be useful to develop the effective measures in chicken against infectious diseases.

Treatment of Autoimmune Diabetes by Inhibiting the Initial Event

  • Lee, Myung-Shik
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.194-198
    • /
    • 2013
  • Recent papers have shown that the initial event in the pathogenesis of autoimmune type 1 diabetes (T1D) comprises sensing of molecular patterns released from apoptotic ${\beta}$-cells by innate immune receptors such as toll-like receptor (TLR). We have reported that apoptotic ${\beta}$-cells undergoing secondary necrosis called 'late apoptotic' ${\beta}$-cells stimulate dendritic cells (DCs) and induce diabetogenic T cell priming through TLR2. The role of other innate immune receptors such as TLR7 or TLR9 in the initiation of T1D has also been suggested. We hypothesized that TLR2 blockade could inhibit T1D at the initial step of T1D. Indeed, when a TLR2 agonist, $Pam3CSK_4$ was administered chronically, the development of T1D in nonobese diabetic (NOD) mice was inhibited. Diabetogenic T cell priming by DCs was attenuated by chronic treatment with $Pam3CSK_4$, indicating DC tolerance. For the treatment of established T1D, immune tolerance alone is not enough because ${\beta}$-cell mass is critically reduced. We employed TLR2 tolerance in conjunction with islet transplantation, which led to reversal of newly established T1D. Dipeptidyl peptidase 4 (DPP4) inhibitors are a new class of anti-diabetic agents that have beneficial effects on ${\beta}$-cells. We investigated whether a combination of DPP4 inhibition and TLR2 tolerization could reverse newly established T1D without islet transplantation. We could achieve normoglycemia by TLR2 tolerization in combination with DPP4 inhibition but not by TLR2 tolerization or DPP4 inhibition alone. ${\beta}$-cell mass was significantly increased by combined treatment with TLR2 tolerization and DPP4 inhibition. These results suggest the possibility that a novel strategy of TLR tolerization will be available for the inhibition or treatment of established T1D when combined with measures increasing critically reduced ${\beta}$-cell mass of T1D patients such as DPP4 inhibition or stem cell technology.

Implication of High Mobility Group Box 1 (HMGB1) in Multicellular Tumor Spheroid (MTS) Culture-induced Epithelial-mesenchymal Transition (Multicellular tumor spheroid (MTS) 배양에 의한 EMT에서 HMGB1의 역할)

  • Lee, Su Yeon;Ju, Min Kyung;Jeon, Hyun Min;Kim, Cho Hee;Park, Hye Gyeong;Kang, Ho Sung
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.9-17
    • /
    • 2019
  • As tumors develop, they encounter microenvironmental stress, such as hypoxia and glucose depletion, due to poor vascular function, thereby leading to necrosis, which is observed in solid tumors. Necrotic cells are known to release cellular cytoplasmic contents, such as high mobility group box 1 (HMGB1), into the extracellular space. The release of HMGB1, a proinflammatory and tumor-promoting cytokine, plays an important role in promoting inflammation and metabolism during tumor development. Recently, HMGB1 was shown to induce the epithelial-mesenchymal transition (EMT) and metastasis. However, the underlying mechanism of the HMGB1-induced EMT, invasion, and metastasis is unclear. In this study, we showed that noninvasive breast cancer cells MCF-7 formed tightly packed, rounded spheroids and that the cells in the inner regions of a multicellular tumor spheroid (MTS), an in vitro model of a solid tumor, led to necrosis due to an insufficient supply of O2 and glucose. In addition, after 7 d of MTS culture, the EMT was induced via the transcription factor Snail. We also showed that HMGB1 receptors, including RAGE, TLR2, and TLR4, were induced by MTS culture. RAGE, TLR2, and TLR4 shRNA inhibited MTS growth, supporting the idea that RAGE/TLR2/TLR4 play critical roles in MTS growth. They also prevented MTS culture-induced Snail expression, pointing to RAGE/TLR2/TLR4-dependent Snail expression. RAGE, TLR2, and TLR4 shRNA suppressed the MTS-induced EMT. In human cancer tissues, high levels of RAGE, TLR2, and TLR4 were detected. These findings demonstrated that the HMGB-RAGE/TLR2/TLR4-Snail axis played a crucial role in the growth of the MTS and MTS culture-induced EMT.

Effects of TLR4 Variants on Fasting Glucose Levels in a Korean Population (한국인에서 TLR4 변이가 공복 시 혈당에 미치는 효과)

  • Kim, Gi Tae;Sull, Jae Woong;Jee, Sun Ha
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.345-349
    • /
    • 2017
  • Diabetes mellitus is associated with a variety of adverse health outcomes, including metabolic syndrome and cardiovascular diseases. Recently, diabetes has been receiving increased scientific attention because of the rapid increase in the diabetic population. One of the features of type-2 diabetes mellitus is an elevated glucose level in blood. Fasting glucose level, which is the most basic test, is widely used as a diagnostic indicator of diabetes. Several previous studies reported that TLR4 expression is relatively high in the heart. However, few studies have investigated the association between TLR4 variants and fasting blood glucose to date. Thus, this study tested the association between single nucleotide polymorphisms (SNPs) in the TLR4 gene and fasting glucose in the Korean population. A total of 994 subjects recruited from Seoul were used for the present study. When compared to fasting blood glucose, the TLR4 gene region was shown as a linkage disequilibrium owing to the relatively large gene range. This region also presented as several LD blocks. We found that specific SNPs in the TLR4 gene were associated with the mean fasting glucose (p<0.01). The minor allele frequency of rs1329067 was 16.4%, and individuals with the AA genotype had a higher fasting blood glucose level than those with the GG genotype, suggesting that genetic variants in TLR4 influence glucose levels in Korean adults.

Two Sjogren syndrome-associated oral bacteria, Prevotella melaninogenica and Rothia mucilaginosa, induce the upregulation of major histocompatibility complex class I and hypoxia-associated cell death, respectively, in human salivary gland cells

  • Lee, Jaewon;Jeon, Sumin;Choi, Youngnim
    • International Journal of Oral Biology
    • /
    • v.46 no.4
    • /
    • pp.190-199
    • /
    • 2021
  • Despite evidence that bacteria-sensing Toll-like receptors (TLRs) are activated in salivary gland tissues of Sjogren syndrome (SS) patients, the role of oral bacteria in SS etiopathogenesis is unclear. We previously reported that two SS-associated oral bacteria, Prevotella melaninogenica (Pm) and Rothia mucilagenosa (Rm), oppositely regulate the expression of major histocompatibility complex class I (MHC I) in human salivary gland (HSG) cells. Here, we elucidated the mechanisms underlying the differential regulation of MHC I expression by these bacteria. The ability of Pm and Rm to activate TLR2, TLR4, and TLR9 was examined using TLR reporter cells. HSG cells were stimulated by the TLR ligands, Pm, and Rm. The levels of MHC I expression, bacterial invasion, and viability of HSG cells were examined by flow cytometry. The hypoxic status of HSG cells was examined using Hypoxia Green. HSG cells upregulated MHC I expression in response to TLR2, TLR4, and TLR9 activation. Both Pm and Rm activated TLR2 and TLR9 but not TLR4. Rm-induced downregulation of MHC I strongly correlated with bacterial invasion and cell death. Rm-induced cell death was not rescued by inhibitors of the diverse cell death pathways but was associated with hypoxia. In conclusion, Pm upregulated MHC I likely through TLR2 and TLR9 activation, while Rm-induced hypoxia-associated cell death and the downregulation of MHC I, despite its ability to activate TLR2 and TLR9. These findings may provide new insight into how oral dysbiosis can contribute to salivary gland tissue damage in SS.

Anti-cancer and Anti-inflammatory Effects of Curcumin by the Modulation of Toll-like Receptor 2, 3 and 4 (Toll-like receptor 2, 3, 4의 신호전달체계 조절을 통한 curcumin의 항암${\cdot}$항염증 효과)

  • Kang, Soon-Ah;Hwang, Daniel;Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.175-180
    • /
    • 2007
  • Toll-like receptors induce innate immune responses recognizing conserved microbial structural molecules that are known as pathogen-associated molecular patterns (PAMPs). Ligand-induced homotypic oligomerization was found to proceed in LPS-induced activation of TLR4 signaling pathways. TLR2 is known to heterodimerize with TLR1 or TLR6 and recognize diacyl- or triacyl-lipopeptide, respectively. These results suggest that ligand-induced receptor dimerization of TLR4 and TLR2 is required for the activation of downstream signaling pathways. Therefore, receptor dimerization may be one of the first lines of regulation in the activation of TLR-mediated signaling pathways and induction of subsequent innate and adaptive immune responses. Here, we report biochemical evidence that curcumin from the plant Curcuma longa inhibits activation of $NF-{\kappa}B$, expression of COX-2, and dimerization of TLRs induced by TLR2, TLR3 and TLR4 agonists. These results imply that curcumin can modulate the activation of TLRs and subsequent immune/inflammatory responses induced by microbial pathogens.

Cooperative Interactions between Toll-Like Receptor 2 and Toll-Like Receptor 4 in Murine Klebsiella pneumoniae Infections

  • Jeon, Hee-Yeon;Park, Jong-Hyung;Park, Jin-Il;Kim, Jun-Young;Seo, Sun-Min;Ham, Seung-Hoon;Jeong, Eui-Suk;Choi, Yang-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1529-1538
    • /
    • 2017
  • Klebsiella pneumoniae is an opportunistic and clinically significant emerging pathogen. We investigated the relative roles of Toll-like receptor (TLR) 2 and TLR4 in initiating host defenses against K. pneumoniae. TLR2 knockout (KO), TLR4 KO, TLR2/4 double KO (DKO), and wild-type (WT) mice were inoculated with K. pneumoniae. Mice in each group were sacrificed after either 12 or 24h, and the lungs, liver, and blood were harvested to enumerate bacterial colony-forming units (CFU). Cytokine and chemokine levels were analyzed using enzyme-linked immunosorbent assay and real-time PCR, and pneumonia severity was determined by histopathological analysis. Survival was significantly shortened in TLR4 KO and TLR2/4 DKO mice compared with that of WT mice after infection with $5{\times}10^3CFU$. TLR2 KO mice were more susceptible to infection than WT mice after exposure to a higher infectious dose. Bacterial burdens in the lungs and liver were significantly higher in TLR2/4 DKO mice than in WT mice. Serum $TNF-{\alpha}$, MCP-1, MIP-2, and nitric oxide levels were significantly decreased in TLR2/4 DKO mice relative to those in WT mice, and TLR2/4 DKO mice showed significantly decreased levels of $TNF-{\alpha}$, IL-6, MCP-1, and inducible nitric oxide synthase mRNA in the lung compared with those in WT mice. Collectively, these data indicate that TLR2/4 DKO mice were more susceptible to K. pneumoniae infection than single TLR2 KO and TLR4 KO mice. These results suggest that TLR2 and TLR4 play cooperative roles in lung innate immune responses and bacterial dissemination, resulting in systemic inflammation during K. pneumoniae infection.

Expression of Toll-like receptors 3, 7, 9 and cytokines in feline infectious peritonitis virus-infected CRFK cells and feline peripheral monocytes

  • Khair, Megat Hamzah Megat Mazhar;Selvarajah, Gayathri Thevi;Omar, Abdul Rahman;Mustaffa-Kamal, Farina
    • Journal of Veterinary Science
    • /
    • v.23 no.2
    • /
    • pp.27.1-27.16
    • /
    • 2022
  • Background: The role of Toll-like receptors (TLRs) in a feline infectious peritonitis virus (FIPV) infection is not completely understood. Objectives: This study examined the expression of TLR3, TLR7, TLR9, tumor necrosis factor-alpha (TNF-α), interferon (IFN)-β, and interleukin (IL)-10 upon an FIPV infection in Crandell-Reese feline kidney (CRFK) cells and feline monocytes. Methods: CRFK cells and monocytes from feline coronavirus (FCoV)-seronegative cats and FCoV-seropositive cats were infected with type II FIPV-79-1146. At four, 12, and 24 hours post-infection (hpi), the expression of TLR3, TLR7, TLR9, TNF-α, IFN-β, and IL-10, and the viral load were measured using reverse transcription quantitative polymerase chain reaction. Viral protein production was confirmed using immunofluorescence. Results: FIPV-infected CRFK showed the upregulation of TLR9, TNF-α, and IFN-β expression between 4 and 24 hpi. Uninfected monocytes from FCoV-seropositive cats showed lower TLR3 and TLR9 expression but higher TLR7 expression compared to uninfected monocytes from FCoV-seronegative cats. FIPV-infected monocytes from FCoV-seropositive cats downregulated TLR7 and TNF-α expression between 4 and 24 hpi, and 4 and 12 hpi, respectively. IFN-β was upregulated early in FIPV-infected monocytes from FCoV-seropositive cats, with a significant difference observed at 12 hpi compared to FCoV-seronegative cats. The viral load in the CRFK and FIPV-infected monocytes in both cohorts of cats was similar over time.ConclusionTLR7 may be the key TLR involved in evading the innate response against inhibiting TNF-α production. Distinct TLR expression profiles between FCoV-seronegative and FCoV-seropositive cats were observed. The associated TLR that plays a role in the induction of IFN-β needs to be explored further.

Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14

  • Kim, Soo Jin;Kim, Ho Min
    • BMB Reports
    • /
    • v.50 no.2
    • /
    • pp.55-57
    • /
    • 2017
  • Toll-like receptor 4 (TLR4) together with MD2, one of the key pattern recognition receptors for a pathogen-associated molecular pattern, activates innate immunity by recognizing lipopolysaccharide (LPS) of Gram-negative bacteria. Although LBP and CD14 catalyze LPS transfer to the TLR4/MD2 complex, the detail mechanisms underlying this dynamic LPS transfer remain elusive. Using negative-stain electron microscopy, we visualized the dynamic intermediate complexes during LPS transfer-LBP/LPS micelles and ternary CD14/LBP/LPS micelle complexes. We also reconstituted the entire cascade of LPS transfer to TLR4/MD2 in a total internal reflection fluorescence (TIRF) microscope for a single molecule fluorescence analysis. These analyses reveal longitudinal LBP binding to the surface of LPS micelles and multi-round binding/unbinding of CD14 to single LBP/LPS micelles via key charged residues on LBP and CD14. Finally, we reveal that a single LPS molecule bound to CD14 is transferred to TLR4/MD2 in a TLR4-dependent manner. These discoveries, which clarify the molecular mechanism of dynamic LPS transfer to TLR4/MD2 via LBP and CD14, provide novel insights into the initiation of innate immune responses.

The Probiotic Lactobacillus Prevents Citrobacter rodentium-Induced Murine Colitis in a TLR2-Dependent Manner

  • Ryu, Seung-Hyun;Park, Jong-Hyung;Choi, Soo-Young;Jeon, Hee-Yeon;Park, Jin-Il;Kim, Jun-Young;Ham, Seung-Hoon;Choi, Yang-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1333-1340
    • /
    • 2016
  • The main objective of this study was to investigate whether Lactobacillus rhamnosus GG (LGG) ameliorated the effects of Citrobactor rodentium infection in Toll-like receptor 2 (TLR2) knockout (KO) and TLR4 KO mice, as well as in wild-type C57BL/6 (B6) mice. TLR2 KO, TLR4 KO, and B6 mice were divided into three groups per each strain. Each group had an uninfected control group (n = 5), C. rodentium-infected group (n = 8), and LGG-pretreated C. rodentium-infected group (n = 8). The survival rate of B6 mice infected with C. rodentium was higher when pretreated with LGG. Pretreatment with LGG ameliorated C. rodentium-induced mucosal hyperplasia in B6 and TLR4 KO mice. However, in C-rodentium-infected TLR2 KO mice, mucosal hyperplasia persisted, regardless of pretreatment with LGG. In addition, LGG-pretreated B6 and TLR4 KO mice showed a decrease in spleen weight and downregulation of tumor necrosis factor alpha, interferon gamma, and monocyte chemotactic protein 1 mRNA expression compared with the non-pretreated group. In contrast, such changes were not observed in TLR2 KO mice, regardless of pretreatment with LGG. From the above results, we conclude that pretreatment with LGG ameliorates C. rodentium-induced colitis in B6 and TLR4 KO mice, but not in TLR2 KO mice. Therefore, LGG protects mice from C. rodentium-induced colitis in a TLR2-dependent manner.