• Title/Summary/Keyword: TPH removal

Search Result 88, Processing Time 0.025 seconds

Treatability Study on the Remediation Groundwater Contaminated by TPH Cr6+ : Lab-Scale Experiment (TPH와 6가 크롬으로 오염된 지하수 처리를 위한 실내 실험)

  • Lee, Gyu-Beom;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.332-345
    • /
    • 2019
  • The purpose of the study is to evaluate the treatability of contaminated groundwater with TPH and (or) $Cr^{6+}$. Laboratory scale tests were performed for oil/water separation, dissolved air flotation (DAF), coagulation and precipitation, and filtration with sand and activated carbon respectively. Two times of oil/water separation tests for total 40 minutes of separation or separating time shows 90.2 % of TPH removal rate. In case of DAF test for high TPH sample, the TPH removal rates were not varied significantly by the variation of microbubble size. However, tests for low TPH samples show that TPH removal rate increases as microbubbles are smaller. When coagulant was added to sample for DAF test, TPH removal rate was increased 12.3 %. SS removal rate by DAF was 97.9 % at $16-40{\mu}m$ and it was increased as the size of microbubble is reduced. Tests for coagulation and precipitation were performed to evaluate the removal of $Cr^{6+}$ in groundwater. The increase of $FeSO_4$ dosage increased $Cr^{6+}$ removal rate in the coagulation and precipitation process. As the amount of activated carbon in the filter media increased TPH removal rate in the filtration process. SS removal rate by the filtration was 96.7 % similar to the results of DAF process tests. The filtration process treats TPH and SS. Best design parameters are determined as the size of sand is $425-850{\mu}m$ and the ratio of activated carbon and sand is 50:50.

Extraction of Total Petroleum Hydracabons from Petroleum Oil-Contaminated Sandy Soil by Soil Washing (토양 세척법에 의한 유류오염 사질토양의 TPH 추출 효율 평가)

  • Lee, Cha-Dol;Yoo, Jong-Chan;Yang, Jung-Seok;Kong, Jun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.18-24
    • /
    • 2013
  • The influences of various operating parameters on physico-chemical techniques were evaluated to remediate petroleum-contaminated sandy soil including S/L ratio, kinetic, and effect of soil particle size. The simple extraction using tap water removed only 20.6% of total petroleum hydrocarbon (TPH), and addition of NaOH enhanced the removal of TPH to approximately 30%. To meet the regulation levels, a surfactant, sodium dodecyl sulfate, was added, and the removal of TPH increased to 4 times. Probably, the carbonate minerals affected chemical aging and soprtion of petroleum, which inhibited the extraction of TPH. The soil with smaller particle size contained more TPH, and the removal of TPH was obstructed with smaller particle size. However, NaOH addition increased the removal of TPH in the smaller particles. The physico-chemical properties of soil influenced greatly the removal of petroleum even in sandy soil.

The Characteristics of TPH Removals by Microwave Radiation for Diesel Contaminated Soil (디젤오염토양 마이크로파 처리 시 TPH의 제거 특성)

  • Jeong, Seung-Woo;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.776-780
    • /
    • 2013
  • TPH degrdation patterns in diesel contaminated soil was investigated with microwave radiation. When microwave radiation on the soil was applied, temperature increment of the aridic soil was quite low, but temperature in the moist soil was dramatically increased even if short period of running time. Up to 20% of the moisture content, the higher moisture content has more increment of temperature, whereas over 20% of the moisture content, temperature in the soil was rather decreased. when 100~700 W power of microwave radiation was applied into the contaminated soil, a lot of TPH removals was observed under 300 W, but negligible increment of TPH removal was detected over 300 W. 60% of TPH removal was achieved with initial 20% moisture content and microwave radiation. Additional 25% removal was accomplished when moisture content was kept constant during radiation period. It indicated that maintaining of constant moisture is an important factor for TPH removal with microwave radiation because moisture and temperature in the soil are decreased with reaction time.

The Study on the Remediation of Contaminated Soil as TPH using SVE and Bioremediation (SVE 및 생물학적 공법을 이용한 TPH 오염토양처리에 관한 연구)

  • Kim, Jung-Kwon
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.97-105
    • /
    • 2008
  • This study examined the contaminated soils with an indicator of TPH using SVE (Soil Vapor Extraction) and biological treatments. Their results are as follows. Water content in the polluted soils slowly decreased from 15% during the initial experimental condition to 10% during the final condition. Purification of polluted soils by Bioventing system is likely to hinder the microbial activity due to decrease of water content. Removal rate of TPH in the upper reaction chamber was a half of initial removal rate at the 25th day of the experiment. The removal rate in the lower reaction chamber was 45% with concentration of 995.4 mg/kg. When the Bioventing is used the removal rate at the 14th day of the experiment was 53%, showing 7 day shortenting. Since the Bioventing method control the microbial activity due to dewatering of the polluted soil, SVE method is likely to be preferable to remove in-situ TPH. The reactor that included microbes and nutrients showed somewhat higher removal rate of TPH than the reactor that included nurtients only during experimental period. In general, the concentration showed two times peaks and then decreased, followed by slight variation of the concentration in low concentration levels. Hence, in contrast to SVE treatment, the biological treatment tend to show continuous repetitive peaks of concentration followed by concentration decrease.

TPH Removal of the Biodegradation Process Using 4 Indigenous Microorganisms for the Diesel Contaminated Soil in a Military Camp (디젤로 오염된 군부대 토양에 대하여 토착미생물 4종을 이용한 생분해법의 TPH 제거 효율 규명)

  • Park, Min-Ho;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.3
    • /
    • pp.49-58
    • /
    • 2012
  • Batch experiments using indigenous and commercialized adventive microorganisms were performed to investigate the feasibility of the biodegradation process for the diesel contaminated soil, which was taken in US Military Camp 'Hialeah', Korea. TPH concentration of the soil was determined as 3,819 mg/kg. Four indigenous microorganisms having high TPH degradation activity were isolated from the soil and by 16S rRNA gene sequence analysis, they were identified as Arthrobacter sp., Burkholderia sp., Cupriavidus sp. and Bacillus sp.. Two kinds of commercialized solutions cultured with adventive microorganisms were also used for the experiments. Various biodegradation conditions such as the amount of microorganism, water content and the temperature were applied to decide the optimal bioavailability condition in the experiments. In the case of soils without additional microorganisms (on the natural attenuation condition), 35% of initial TPH was removed from the soil by inhabitant microorganisms in soil for 30 days. When the commercialized microorganism cultured solutions were added into the soil, their average TPH removal efficiencies were 64%, and 54%, respectively, which were higher than that without additional microorganisms. When indigenous microorganisms isolated from the contaminated soil were added into the soil, TPH removal efficiency increased up to 95% (for Bacillus sp.). According to the calculation of the average biodegradation rates for Bacillus sp., the remediation goal (87% of the removal efficiency: 500 mg/kg) for the soil would reach within 24 days. Results suggested that TPH removal efficiency of biodegradation by injecting indigenous microorganisms is better than those by injecting commercialized adventive microorganisms and only by using the natural attenuation.

The Effect of Microorganisms, Nutrients, and Surfactants on the Bioremediation of Oil-Contaminated Soil (유류오염토양의 정화에서 미생물, 영양제 및 계면활성제의 영향)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • This study was focused on the investigation of the characteristics of TPH and BTEX removal in oil-contaminated sandy soil and fine soil with injection of microorganisms, nutrients, and surfactants. As the result of the experiments maintained moisture contents by 10${\sim}$20%, the TPH removal efficiency in oil-contaminated sandy soil was the highest in C-1 (microorganisms+nutrients), and the efficiency in C-2 (microorganisms+nutrients+surfactants) was higher than the efficiency in C-0(microorganisms). In 81 days, TPH removal efficiency in case of C-0, C-1 and C-2 showed 51%, 83%, 63% respectively. The results of D group with fine soil showed similar trends as C group, but the TPH removal efficiency of D group was lower than that of C group. Those of both C and D group were the highest in 1 group (microganisms+nutrients). The pH of fine soil was some lower than that of sandy soil or was similar to sandy soil. In 14 days, BTEX removal efficiency in case of C-0, C-1, C-2, D-0, D-1 and D-2 showed 99.8%, 99.4%, 96.0%, 99.5%, 99.2%, 96.3% respectively. Those of both C and D group were the highest in 0 group (microganisms).

Phyto-restoration Potential of Soil Properties using Secale cereale for Recycle of Soils with Residual TPHs (Total Petroleum Hydrocarbons) after Off-site Treatment (잔류유분 함유 반출처리토 재활용을 위한 호밀 식재 식물상 토성회복 가능성)

  • Park, Jieun;Bae, Bumhan;Joo, Wanho;Bae, Seidal;Bae, Enjoo
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.25-32
    • /
    • 2014
  • The amount of TPH contaminated soil treated at off-site remediation facilities is ever increasing. For the recycle of the treated-soil on farmlands, it is necessary to restore biological and physico-chemical soil characteristics and to remove residual TPH in the soil by an economic polishing treatment method such as phytoremediation. In this study, a series of experiments was performed to select suitable plant species and to devise a proper planting method for the phyto-restoration of TPH-treated soil. Rye (Secale cereale) was selected as test species through a germination test, among 5 other plants. Five 7-day-old rye seedlings were planted in a plastic pot, 20 cm in height and 15 cm in diameter. The pot was filled with TPH-treated soil (residual TPH of 1,118 mg/kg) up to 15 cm, and upper 5 cm was filled with horticulture soil to prevent TPH toxic effects and to act as root growth zone. The planted pot was cultivated in a greenhouse for 38 days along with the control that rye planted in a normal soil and the blank with no plants. After 38 days, the above-ground biomass of rye in the TPH-treated soil was 30.6% less than that in the control, however, the photosynthetic activity of the leaf remained equal on both treatments. Soil DHA (dehydrogenase activity) increased 186 times in the rye treatment compared to 10.8 times in the blank. The gross TPH removal (%) in the planted soil and the blank soil was 34.5% and 18.4%, respectively, resulting in 16.1% increase of net TPH removal. Promotion of microbial activity by root exudate, increase in soil permeability and air ventilation as well as direct uptake and degradation by planted rye may have contributed to the higher TPH removal rate. Therefore, planting rye on the TPH-treated soil with the root growth zone method showed both the potential of restoring biological soil properties and the possibility of residual TPH removal that may allow the recycle of the treated soil to farmlands.

Optimization of nutrients requirements for bioremediation of spent-engine oil contaminated soils

  • Ogbeh, Gabriel O.;Tsokar, Titus O.;Salifu, Emmanuel
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.484-494
    • /
    • 2019
  • This paper presents a preliminary investigation of the optimum nutrients combination required for bioremediation of spent-engine oil contaminated soil using Box-Behnken-Design. Three levels of cow-manure, poultry-manure and inorganic nitrogen-phosphorus-potassium (NPK) fertilizer were used as independent biostimulants variables; while reduction in total petroleum hydrocarbon (TPH) and total soil porosity (TSP) response as dependent variables were monitored under 6-week incubation. Ex-situ data generated in assessing the degree of biodegradation in the soil were used to develop second-order quadratic regression models for both TPH and TSP. The two models were found to be highly significant and good predictors of the response fate of TPH-removal and TSP-improvement, as indicated by their coefficients of determination: $R^2=0.9982$ and $R^2=1.000$ at $p{\leq}0.05$, respectively. Validation of the models showed that there was no significant difference between the predicted and observed values of TPH-removal and TSP-improvement. Using numerical technique, the optimum values of the biostimulants required to achieve a predicted maximum TPH-removal and TSP-improvement of 67.20 and 53.42%-dry-weight per kg of the contaminated soil were as follows: cow-manure - 125.0 g, poultry-manure - 100.0 g and NPK-fertilizer - 10.5 g. The observed values at this optimum point were 66.92 and 52.65%-dry-weight as TPH-removal and TSP-improvement, respectively.

슬러지 식종에 따른 디젤연료에 오염된 토양내 n-alkane 및 isoprenoid의 변화

  • 이태호;박현철;최선열;박태주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.131-134
    • /
    • 2004
  • Several physical and chemical methods have been used for remediation contaminated by oils. However the cost was very high and secondary pollution rose during treating. The purpose of this study was to comprision TPH (total petroleum hydrocarbon) removal from artificially contaminated soil by diesel with and without seeding anaerobic digested sludge. After 120 days of overall at 35$^{\circ}C$, removal efficiency of TPH with seeding sludge was 2-3 times higher than blank. Also, the more amount seeding sludge, TPH removal efficiency and CH$_4$ content more obtained. It was sad that seeding of anaerobic digested sludge was a good method for enhancing TPH removal efficiency without increasing operating cost. Sulfate, nitrate-reducing, methanogenic condition were evaluated for alkane, isoprenoid as target contaminated soil.

  • PDF

In-situ Bioremediation of Total Petroleum Hydrocarbons-Contaminated Soil by Pseudomonas Species (토양 내 TPH(Total Petroleum Hydrocarbons)의 생물학적 분해 연구)

  • Kim, Jee-Young;Lee, Sang-Seob
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • We previously showed that five strains belonging to Pseudomonas could remove TPH (Total Petroleum Hydrocarbons) efficiently when they are applied to TPH-contaminated soil. We optimized the bioremediation condition using different hydrocarbons and nutrients conditions to improve the efficiency. We setup lab-scale column bioreactor to monitor TPH and diesel removal efficiency. When we applied five Pseudomonas sp. mixtures to 25,000 $mg{\cdot}kg^{-1}$ TPH-contaminated soil (diesel 10,000 $mg{\cdot}kg^{-1}$, kerosene 10,000 $mg{\cdot}kg^{-1}$, gasoline 5,000 $mg{\cdot}kg^{-1}$) with the optimum condition, 76.3% of TPH removal efficiency was shown for 25 days. Meanwhile, in the application of five Pseudomonas sp. mixtures to 20,000 $mg{\cdot}kg^{-1}$ diesel-contaminated soil with the optimum condition, 99.2% of diesel removal efficiency was shown for 40 days. In the application to lab-scale bioreactor with five high efficiency bacteria, 88.5% of TPH removal efficiency was shown for 45 days. Based on the results from this study, we confirmed that this mixed Pseudomonas sp. consortium might improve the bioremediation of TPH in contaminated soil, the efficacy can be controlled by improving the nutrients. We also confirmed that the nutrients and oxygen for biodegradation of TPH could contribute on the management and control of applications of these strains for the study of bioremediation of TPH-contaminated soil.