• Title/Summary/Keyword: TRL

Search Result 60, Processing Time 0.032 seconds

A Study on TRL Application to the Materials and Components Development Program (부품.소재개발사업의 TRL 적용에 관한 연구)

  • Seo, Jung-Ha;Jeon, Gi-Young;Jeon, Han-Su
    • Journal of Korea Technology Innovation Society
    • /
    • v.10 no.4
    • /
    • pp.789-807
    • /
    • 2007
  • Technology Readiness Levels were initially proposed by NASA in 1995. TRL's definition and range were modified within adopted feilds such as hardware and software products. Many national R&D programs have similar evaluation conditions. However, they are influenced by the experts' ability. Relatively, they have shown the little reliance and the low performance of the developed prototype and technology. The purpose of this study is to apply the TRL to the materials and components development program. We defined TRLs for the program and devided them in three technology fields. Proposals, which were submitted for the program in 2007, were assessed with our TRL definitions for the study on the applicability. As a result, we could understand the characteristic TRLs of the technical proposals to the materials and components development program. This shows that the objective tools such as TRLs are required as the R&D program management factors. For the sake, it is the important factor that the detail directives to assess TRL should be developed according to the branches of industrial technology fields.

  • PDF

A Study on the Effect of Technology Readiness Level and Commercialization Activities on the Success of Technology Commercialization: Focusing on Public Technology (기술사업화 성공에 대한 기술성숙도 및 사업화 활동의 영향에 관한 연구: 공공기술을 중심으로)

  • Shin, Yoonmi;Bong, Kang Ho;Park, Jaemin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.197-206
    • /
    • 2021
  • There is growing interest in the function and role of public research institutes as "entrepreneurial actors" that can contribute to industrial development by commercializing excellent research outputs. On the other hand, their performance in the commercialization phase is insufficient because of the insufficient technological technology readiness level or repeatability. This study conducted probit model analysis to examine the effect of the technology readiness level and commercialization activities on the success of technology commercialization. The results showed that the possibility of success in technology commercialization increased with increasing TRL at the time of acquisition. In addition, the difference between the TRL at the time of acquisition and the current TRL (TRL Gap) does not affect technology commercialization on its own. It generates additional effects in conjunction with the TRL at the time of acquisition. Finally, the results show that technology commercialization is most likely to succeed if technology with a TRL 4-6 level is improved to TRL 9 level through a marginal effect estimation.

Technology Readiness Level Assignment to Industrial Plant System Life Cycle

  • Salim, Shelly;Jo, Raehyeok;Lee, Taekyeong;Lee, Joongyoon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.1-11
    • /
    • 2015
  • During the industrial plant system life cycle, required technologies are developed and assessed to analyze their performance, risks and costs. The assessment is called technology readiness assessment (TRA) and the measure of readiness is called technology readiness level (TRL). The TRL consists of 9 levels and through the TRL assessment, the technology to be developed and its components are assigned to their appropriate TRL. TRL assessment should be performed in each life cycle stages to monitor the technology readiness and analyze the potential risks and costs. However, even though the concept of TRL has been largely adopted by numerous organizations and industry, direct and clear assignment of target TRL for each life cycle stage has been overlooked. Direct mapping/assignment of target TRL for each life cycle has benefits as follow: (1) the technical risks condition of each life cycle stage can be better understood, (2) cost incurred if the technology development is failed can be analyzed in each life cycle stage, and (3) more effective decision making because the technology readiness achievement for each life cycle stages is agreed beforehand. In this paper, we propose a steel-making plant system life cycle and TRL assignment to each of the system life cycle stage. By directly assigning target TRL for each life cycle stages, we look forward to a more coordinated (in terms of exit criteria) and highly effective (in terms of technical risks identification and eventually prevent project failure) technology development and assessment processes.

TRL Impact on Development Schedule and Cost in the Aerospace Project (항공우주개발 프로젝트에서 개발기간과 비용에 대한 TRL의 영향 분석)

  • Hwang, Hyung-Won;Kim, Hong-Rae;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.264-272
    • /
    • 2012
  • TRL has a direct impact on development schedule and cost in the system or technology development projects. If TRL capability of development organization for specified CTEs can be accurately assessed and the impact of TRL on development schedule and cost are analyzed as detailed as possible, the risk of development schedule delay and cost increase can be minimized during the development process. This paper describes analysis results of TRL impact on development schedule and cost in the aerospace project. The development schedule and cost change are quantitatively estimated for the TRL improvement in the Unmanned Aerial Vehicle(UAV) system development program.

A Technology Readiness Level (TRL) Management using the Systems Engineering Tool for the Space Launch Vehicle (시스템엔지니어링 전산관리도구를 활용한 우주발사체 기술완성도(TRL) 관리)

  • Jang, Jun Youk;Kwon, Byung Chan;Lim, Chang Young;Cho, Dong Hyun;Yoo, Il Sang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.18-24
    • /
    • 2020
  • The KSLV-II project with high difficulties technically requires thorough technical management during long-term life cycle more than 10 years for launching into space. The TRL is a quantitative indicator developed by NASA widely used all over the world to measure technology maturity of a system development objectively and consistently. The TRL is also used to make sure technology level and to establish a future direction in the KSLV-II project. The TRL has advantage enable to identify a technology level through quantitative indicators. However, it takes a lot of efforts such as trials and errors, time and cost to apply it to the project considering the project environments, and stakeholder needs. These include not only to establish TRL management plan from ideal, conceptual and abstractive standards/guidelines such as NASA's, but also to construct TRL management environment enable to apply and manage harmoniously. In the KSLV-II project, it is required to figure out current technology level and technology development trend in the future, to access conveniently, to share related data in real time, and to update periodically for the comprehensive TRL management. From the reason above, the TRL management environment was built by using the systems engineering tool already has been used for other system management data such as requirements in the project. It also could be accomplished a practical management basis of systems engineering from the traceability among system management data including TRL. In this paper, case study results are introduced to manage the TRL for the space launch vehicle using the systems engineering tool in the KSLV-II project.

Technology Readiness Levels (TRLs) Indicator Development for Geoscience and Mineral Resources R&D (지질자원 연구개발에 대한 기술개발단계(TRL) 지표 개발)

  • Ahn, Eun-Young;Kim, Seong-Yong;Lee, Jae-Wook
    • Economic and Environmental Geology
    • /
    • v.48 no.5
    • /
    • pp.421-429
    • /
    • 2015
  • Base researches in geoscience and mineral resources, such as geological and geo-thematic mapping, geological survey and observation, have long-term, continuity and time-leasing characteristics and they are difficult to present the particular research stages or progressions in the research span. The Technology Readiness Levels (TRLs), developed by the U.S. National Aeronautics and Space Administration (NASA), is effective for presenting research maturity levels and progression in the development of new technologies. This study suggests adjusted definitions for the Technology Readiness Levels to fit Geo-technology (Technology in Geoscience and Mineral Resources). Base geological researches, including mapping, surveys and observation, can be also presented in research levels from TRL 1 (R&D planning, literature survey) to TRL 9 (geological information construction and service in all target areas) in terms of the final product's coverage. Moreover, not only development and construction of commercial products, geological disasters and environmental researches can also be presented in field demonstrations through public pilot applications. The modified commercialization or cemonstration TRLs in Geo-technology are TRL 5 (starting pilot field application), TRL 6 (pilot field operation) and TRL 7 (pilot field operation for a larger scale, greater than ten percent of the actual environment).

Analysis of characteristics of TRL(Transmission line) in LTCC (low temperature cofired ceramic) system (저온 소성 유전체 세라믹 시스템에서의 전송 선로 특성 해석)

  • Yoo, Joshua;Lee, W.S.;Kang, N.K.;Park, J.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.23-26
    • /
    • 2002
  • In ceramic systems using LTCC, many components including embedded passives and TRL's are used for composition of 3-dimensional circuit. So the exact analysis on this components must be performed. As for the TRL's, material properties including electrical conductivity of metal, loss factor and effective dielectric constant of dielectric material and geometrical factors like roughness of surface, vias, dimension of TRL structure have a large effect on the characteristics of transmission lines. Such properties of materials have different values in each system with ideal ones presented in text book. In this research, the effective material properties in each system are examined and the effect of material properties and geometrical factors on the characteristics of TRL's are analyzed and quantified by simulation and measurement.

  • PDF

Calculation TRL using Integration Readiness Between Technologies for Supporting Technology-transition of Defense Technologies to the Defense Weapons System (국방시스템 기술전이지원을 위한 기술성숙도 도출에 관한 연구)

  • Bae, Yoon-Ho;Choi, Seok-Cheol
    • Korean Management Science Review
    • /
    • v.26 no.3
    • /
    • pp.157-167
    • /
    • 2009
  • Technology transition from defense technology to weapon system is an important process for defense acquisition program. Many countries such as USA, UK, Australia and Republic of Korea use technology readiness level (TRL) as a tool for technology transition by identifying critical technology elements (CTEs) and assessing the technology maturity. In this paper we review a transition process for the defense acquisition. Then we suggest a method to evaluate system's TRL using each component TRL and integration readiness level (IRL) between each technologies. We apply the method to an ACTD project. A result show that technology maturity is influenced by integration between technologies.

Core Technologies Derivation of Fusion DEMO Reactor Applying TRL and AHP (TRL과 AHP를 적용한 핵융합 실증로 핵심기술 도출)

  • CHANG, Hansoo;KIM, Youbean;CHOI, Wonjae;THO, Hyunsoo
    • Journal of Technology Innovation
    • /
    • v.22 no.4
    • /
    • pp.145-164
    • /
    • 2014
  • Nuclear fusion is one of the most promising options for generating large amounts of carbon-free energy in the future. Major countries such as China, EU, and Japan have established a national plan for DEMO construction and they are implementing it. Korea has started a nuclear fusion research and development by the KSTAR project started in 1995. There are matured needs for a full-scale research and development initiatives to ensure competition with the major countries for DEMO as well as achieve the final goal to commercialize fusion energy. In this paper, we apply the TRL and AHP methods in order to identify the key technologies to conduct DEMO R&D. We propose the priorities of future R&D on DEMO by deriving a core technology in the field. At first, we review the scientific theory of fusion and trend of progress of DEMO activities in major countries. For previous studies, we review TRL and AHP methods to examine the technology classification system of DEMO and identify key technologies. We apply TRL method to identify readiness level of DEMO technologies and AHP to compensate shortcoming of TRL. The key technologies of DEMO to be secured from a synthesis result of the TRL and AHP are burning plasma, plasma facing material, structural material, high frequency heating, neutral particle beam, safety, plasma diagnostic, and simulation technologies.

Improve the Support System for SMEs' Commercialization of Biohealth Industry: Focusing on TRL (바이오헬스 분야 사업화를 위한 지원체계 개선방안: TRL단계를 중심으로)

  • Jeon, Heesung;Rim, Yonghoon;Kang, Byungseok;Cho, Yun-Hee;Park, So-Jin
    • Journal of Digital Convergence
    • /
    • v.18 no.2
    • /
    • pp.83-93
    • /
    • 2020
  • As the importance of the biohealth industry has recently increased, innovative government support is required. However due to the limitation in the support framework, a complementary support system for commercialization is needed. This study examines the concept of TRL which the existing support being following, and investigates domestic support system and overseas support cases. It points out that the current TRL-based government support policy has limitations for the commercialization of the biohealth industry, which requires a lot of time and investment. The new concept of the support system reflecting the characteristics of the bio-industry and solving the problems of late R&D stage was proposed and connected with the policy direction. It is meaningful that the role as a guideline for overcoming the gap between research and industry for the commercialization of the biohealth.