• Title/Summary/Keyword: Tactical vehicle

Search Result 62, Processing Time 0.021 seconds

The Selection of Representative Drive Course for Small Tactical Vehicles Through Movement Condition and Operational Environment Analysis (소형전술차량 기동조건 및 운용환경 분석을 통한 대표주행경로 선정)

  • Kim, Juhee;Lee, Jongwoo;Yoo, Samhyeun;Park, Ji-il;Shin, Hyunseung;Kwon, Youngjin;Choi, Hyunho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.341-352
    • /
    • 2019
  • LTV(Light Tactical vehicle) operating in our military requires higher levels of performance and durability to withstand harsher conditions than ordinary vehicles, as they must travel on both rough-train and off-road as well as on public roads. Recently, developed light tactical vehicle is developed by a variety of test evaluations in order to satisfy ROC(Required Operational Capability) by the requirement military group. However, there is no standardized driving test condition for satisfying the durability performance of Korean tactical vehicle. Therefore, this study aims to provide basic data to establish reliable driving test conditions by analyzing the maneuver conditions and the driving data in order to select the representative drive course required. To do this, we analyzed the future operational environment, the area of operation analysis and the driving information of light tactical vehicle.

A study on control method of DPF regeneration according to operation characteristics of Light Tactical Vehicle (전술차량 운용 특성에 따른 DPF 재생 제어 개선방안 연구)

  • Kim, Seon-Jin;Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.689-695
    • /
    • 2018
  • This paper presents the means of controlling the regeneration of a diesel particulate filter (DPF) that is mounted on tactical vehicles to satisfy exhaust gas standards. The DPF captures particulate matter in the exhaust gas and combusts the captured particulate matter. This process is regeneration, which is essential to the normal performance of the DPF. Bad regeneration causes degradation of vehicle performance; worse, it can lead to a vehicle fire. DPF regeneration is performed by control logic. If the regeneration control logic does not properly reflect the operating characteristics of the vehicle, DPF regeneration may not occur. Consequently, it is very important to ensure the DPF operates properly by reflecting the operating characteristics of the tactical vehicle. This study analyzes the operational characteristics of a tactical vehicle and the DPF, and adds proper DPF regeneration control logic. Additionally, this study is intended to simultaneously improve the additional problems that may occur from operating under the added regeneration control logic.

Light-weight Design of a Korean Light Tactical Vehicle Using Optimization Technique (최적화 기법을 이용한 한국형 소형전술차량의 경량설계)

  • Suh, Kwonhee;Song, Bugeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.336-343
    • /
    • 2015
  • One of various main jobs in the design of a new tactical vehicle is to develop the lightest chassis parts satisfying the required durability target. In this study, the analytic methods to reduce the size and weight of a lower control arm and chassis frame of a Korean light tactical vehicle are presented. Topology optimization by ATOM (Abaqus Topology Optimization Module) is applied to find the optimal design of the suspension arm with volume and displacement constraints satisfied. In case of chassis frame, the light-weight optimization process associated with design sensitivity method is developed using Isight and ABAQUS. By these analytic methods we can provide design engineers with guides to where and how much the design changes should be made.

A Study on the Improvement of Distance Range for Medium Tactical Vehicle (중형전술차량의 항속거리 향상 방안 연구)

  • Lee, HyungChae
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • The military has developed and operated a variety of military vehicles. Among them, medium tactical vehicles are developed as vehicles suitable for transporting troops, replacing existing military trucks, which have a significant impact on infantry forces' combat capability. Applying technology to increase fuel efficiency to these critical weapons systems, medium tactical vehicles, increases the distance range, which can reduce effective operational performance and oil costs. In this study, a measure was taken to improve the distance range of Medium Tactical Vehicles by applying an oil temperature control strategy to increase fuel efficiency.

Durability Analysis on the Prototype of a Korean Light Tactical Vehicle (한국형 소형전술 시제차량의 내구성능 평가)

  • Suh, Kwonhee;Yu, Myeongkwang;Lim, Mintaek;Jeong, Chanman
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.148-156
    • /
    • 2013
  • Since the demand for new military vehicle to fulfill the necessary conditions such as multi-purpose, high-mobility, and survivability has raised continuously from the army, the prototype of a Korean light tactical vehicle was developed to meet these requirements using our own technology. In particular, the new tactical vehicle was equipped with a double wishbone independent suspension to improve ride and handling and maximize off-road driving performance. In this paper, a comprehensive virtual durability process to evaluate the service life of the prototype is presented. A reliability of the trimmed body model based on CATIA data was verified by comparison result between mode analysis and modal test. The dynamic model was constructed using ADAMS/Car, and then the weight distribution and lateral slope driving performance of it were compared with the results of static weight and lateral slope tests. The validity of the VTL(Virtual Test Lab) was checked with test results from the 3-inch spaced impact road. The durability performances of trimmed body and suspension components were evaluated through MSM(Modal Superposition Method) fatigue analysis. It is shown that the virtual durability process could be a helpful tool to find out the weak areas and improve their structures in developing new military vehicle.

A Study on the Method of Analyzing the Topography Characteristics of the Main Maneuvering Test Site for the Selection of the Representative Drive Course of Combat Vehicles (전투차량 대표주행경로 선정을 위한 주행시험장 지형 특성 분석 기법 연구)

  • Kim, Juhee;Choi, Hyunho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.293-301
    • /
    • 2021
  • LTV(Light Tactical Vehicle) operating in our military requires higher levels of performance and durability to withstand harsher conditions than general vehicles, as they must travel on both rough-train and off-road as well as on public roads. Recently, LTV development is demanded a variety of test evaluations in order to satisfy ROC (Required Operational Capability) by the military requirement. However, there is no informations of driving test course for satisfying the durability performance of Korean tactical vehicle. Therefore, this study aims to provide basic data to establish reliable drive test conditions by analyzing the main maneuvering test site at the domestic and foreign country in order to select the representative drive course. These studies will provide a more scientific and systematic evaluation solution for the development of tactical vehicles, and can be effectively used to establish a certified system for military vehicle test evaluation in the future

Endurance test procedure and validation of Multipurpose tactical vehicle (다목적 전술차량의 주행내구도 시험 절차 및 검증)

  • Jeong, Eui-Bong;Kang, Dong-Suk;Choi, Ji-Ho;Kim, Han-Shang;Choi, Man-Sick
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.256-261
    • /
    • 2014
  • Endurance test procedures of multipurpose tactical vehicle is constructed by comparing the Korea defence standard and TOP-2-2-506. The plan was to make the best reflect the operational environment and the actual production purposes. Endurance test of multipurpose tactical vehicle more stringent than the existing other military vehicles validation procedures. But the test plan, it is possible to reduce the cost and schedule of long verification that occurs because of the Endurance test. Through a comparison of the dynamic characteristic analysis, change of test center was to ensure the reliability and validity.

  • PDF

Discrete Noise Prediction of Small-Scale Propeller for a Tactical Unmanned Aerial Vehicle (소형 전술급 무인항공기 프로펠러의 이산소음 수치해석)

  • Ryu, Ki-Wahn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.790-798
    • /
    • 2018
  • Discrete noise signals from a small scale tactical unmanned aerial vehicle(UAV) propeller were predicted numerically using time domain approach. Two-bladed 29 inch propeller in diameter and 150 kgf in gross weight were used for main parameters of the UAV based on the actual size of the similar scale vehicle. Panel method and Farassat formula A1 were adopted for aerodynamic and aeroacoustic analysis respectively. Time domain signals of both thickness and loading noises were transformed into frequency domain to analyze the discrete noise characteristics. Directivity pattern in a plane perpendicular to the rotating disc plane and attenuation of noise intensity according to double distance were also presented.

A Study on Cross Member Strength Improvement of Korean Light Tactical Vehicle (한국형 전술차량 크로스멤버 강도개선에 관한 연구)

  • Kim, Sung-Gon;Kim, Sun-Jin;Shin, Cheol-Ho;Kang, Tae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.758-764
    • /
    • 2019
  • The chassis of the Korean light tactical vehicle adopts a frame-on-body structure that uses lightweight design technology in terms of equipment operating characteristics. Military vehicles are operated in much harsher conditions compared to civilian vehicles, including mountainous terrain, especially steep slopes. Due to this characteristic, frame-welded cracks were found on some military vehicles. Therefore, in this paper, road damage analysis was conducted by identifying various roads including the military unit's road. The result confirmed that the operating environment of some military units' tactical road was much harsher than the endurance road test condition. A solution was derived through defect analysis, design review, and actual vehicle driving test. This study can be used as a reference by suggesting the development direction for the durability test of a new vehicle.

The Optimal Design of Wear Pads for the Final Reduction Drive in Tactical Vehicles (전술차량용 종감속기 마모패드 최적설계에 관한 연구)

  • Shin, Hunyong;Lee, Yong-Jun;Ryu, Jungmin;Kang, Taewoo;Oh, Dae-san;Sim, Jungwook;Shin, Minsu;Son, Kwon-il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.54-59
    • /
    • 2019
  • The final reduction drive in tactical vehicles has a wear-pad that helps to maintain adequate end floating when the hub assay operates. The input axis and sun gear move repeatedly with the axis when tactical vehicle is operating. The hub assay is designed so that the wear pads won't seize during operation. Seizure of the wear pads during operation results in oil leakage. In our study, the fault mechanism was analyzed to prevent the seizure of the wear pads and an optimal design for the shape and material of the wear-pad was explored. We then observed the changes in temperature, shape, and material of several important parts.