• Title/Summary/Keyword: Tagatose-6-phosphate isomerase

Search Result 4, Processing Time 0.021 seconds

Substrate Variety of a Non-metal Dependent Tagatose-6-phosphate Isomerase from Staphylococcus aureus (Staphylococcus aureus 유래 비금속성 이성화효소인 Tagatose-6-phosphate Isomerase의 기질다양성)

  • Oh Deok-Kun;Ji Eun-Soo;Kwon Young-Deok;Kim Hye-Jung;Kim Pil
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.2
    • /
    • pp.106-111
    • /
    • 2005
  • To investigate the substrate variety of a putative non-metal dependent isomerase, the tagatose-6-phosphate isomerase (E.C. 5.3.1.26) structural genes (lacB; 510bp and lacA; 430bp) of Staphylococcus aureus were subcloned and co-expressed. Based on the substrate configuration, various aldoses were surveyed for substrate of ketose isomerization. Among the 10 aldoses tested, D-ribose and D-allose were isomerized by the enzyme. The subunit A and B showed more than $95\%$ activity for D-ribose and $75\%$ for D-allose in the presence of 1mM EDTA compared with non-EDTA conditions, which implying tagatose-6-phosphate isomerase is a non-metal dependent isomerase. Each of subunit A or subunit B alone showed no activity for any of the substrates tested. The affinity constant ($K_m$) of tagatose-6-phosphate isomerase against D-ribose and D-allose were 26 mM and 142 mM, respectively.

Escherichia coli Arabinose Isomerase and Staphylococcus aureus Tagatose-6-Phosphate Isomerase: Which is a Better Template for Directed Evolution of Non-Natural Substrate Isomerization?

  • Kim, Hye-Jung;Uhm, Tae-Guk;Kim, Seong-Bo;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.1018-1021
    • /
    • 2010
  • Metallic and non-metallic isomerases can be used to produce commercially important monosaccharides. To determine which category of isomerase is more suitable as a template for directed evolution to improve enzymes for galactose isomerization, L-arabinose isomerase from Escherichia coli (ECAI; E.C. 5.3.1.4) and tagatose-6-phosphate isomerase from Staphylococcus aureus (SATI; E.C. 5.3.1.26) were chosen as models of a metallic and non-metallic isomerase, respectively. Random mutations were introduced into the genes encoding ECAI and SATI at the same rate, resulting in the generation of 515 mutants of each isomerase. The isomerization activity of each of the mutants toward a non-natural substrate (galactose) was then measured. With an average mutation rate of 0.2 mutations/kb, 47.5% of the mutated ECAIs showed an increase in activity compared with wild-type ECAI, and the remaining 52.5% showed a decrease in activity. Among the mutated SATIs, 58.6% showed an increase in activity, whereas 41.4% showed a decrease in activity. Mutant clones showing a significant change in relative activity were sequenced and specific increases in activity were measured. The maximum increase in activity achieved by mutation of ECAI was 130%, and that for SATI was 190%. Based on these results, the characteristics of the different isomerases are discussed in terms of their usefulness for directed evolution of non-natural substrate isomerization.

Bioconversion of Rare Sugars by Isomerases and Epimerases from Microorganisms (미생물 유래 당질관련 이성화효소 및 에피머효소를 이용한 희소당 생물전환)

  • Kim, Yeong-Su;Kim, Sang Jin;Kang, Dong Wook;Park, Chang-Su
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1545-1553
    • /
    • 2018
  • The International Society of Rare Sugars (ISRS) defines rare sugars as monosaccharides and their derivatives that rarely occur in nature. Rare sugars have recently received much attention because of their many uses including low-calorie sweeteners, bulking agents, and antioxidants, and their various applications including as immunosuppressants in allogeneic rat liver transplantation, as potential inhibitors of various glycosidases and microbial growth, in ischemia-reperfusion injury repair in the rat liver, and in segmented neutrophil production without detrimental clinical effects. Because they rarely exist in nature, the production of rare sugars has been regarded as one of the most important research areas and, generally, they are produced by chemical synthesis. However, the production of rare sugars by bioconversion using enzymes from microorganisms has been receiving increased attention as an environmentally friendly alternative production method. In particular, D-allulose, D-allose, and D-tagatose are of interest as low-calorie sweeteners in various industries. To date, D-tagatose 3-epimerase, D-psicose 3-epimerase, and D-allulose 3-epimerase have been reported as D-allulose bioconversion enzymes, and L-rhamnose isomerase, Galactose 6-phosphate isomerase, and Ribose 5-phosphate isomerase have been identified as D-allose production enzymes. Elsewhere, D-tagatose has been produced by L-arabinose isomerase from various microorganisms. In this study, we report the production of D-allulose, D-allose, and D-tagatose by microorganism enzymes.