• Title/Summary/Keyword: Talaromyces flavus

Search Result 11, Processing Time 0.023 seconds

The Pear Black Necrotic Leaf Spot Disease Virus Transmitted by Talaromyces flavus Displays Pathogenicity Similar to Apple stem grooving virus Strains

  • Shim Hye-Kyung;Hwang Kyu-Hyon;Shim Chang-Ki;Son Su-Wan;Kim Dong-Giun;Choi Yong-Mun;Chung Young-Jae;Kim Dae-Hyun;Jee Hyeong-Jin;Lee Suk-Chan
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.255-259
    • /
    • 2006
  • The pathogenicity to pear trees and other experimental hosts of the Apple stem grooving virus Korean isolate (ASGV-K) carried by a fungal vector, Talaromyces flavus was examined. ASGV-harboring T. flavus induced mild symptoms on virus-free pears. Symptom severity was intermediate between pears showing typical PBNLS and virus-free pears. Ten cultivars of Phaseolus vulgaris showed 35%-90% infectivity by direct infiltration into leaves and roots by ASGV-harboring T. flavus. Application of fungal cultures to soils showed 0%-70% infectivity depending on the P. vulgaris cultivar. Sap extracted from ASGV-infected Chenopodium quinoa induced similar symptoms on P. vulgaris at 25 days after inoculation. Similar symptoms were also detected on P. vulgaris which were inoculated with ASGV-harboring T.flavus. When healthy P. vulgaris leaves were challenged with sap extracted from P. vulgaris leaves infected with ASGV-harboring T. flavus, typical symptoms were observed. These data suggest that T. flavus mediates the transfer of ASGV to host plants.

Enhancement of Seed Dehiscence by Seed Treatment with Talaromyces flavus GG01 and GG04 in Ginseng (Panax ginseng)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Kim, Seok-Cheol
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Seed dehiscence of ginseng (Panax ginseng C. A. Mayer) is affected by moisture, temperature, storage conditions and microbes. Several microbes were isolated from completely dehisced seed coat of ginseng cultivars, Chunpoong and Younpoong at Gumsan, Korea. We investigated the potential of five Talaromyces flavus isolates from the dehiscence of ginseng seed in four traditional stratification facilities. The isolates showed antagonistic activities against fungal plant pathogens, such as Cylindrocarpon destructans, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia nivalis, Botrytis cinerea, and Phytophthora capsici. The dehiscence ratios of ginseng seed increased more than 33% by treatment of T. flavus GG01, GG02, GG04, GG12, and GG23 in comparison to control (28%). Among the treatments, the reformulating treatment of T. flavus isolates GG01 and GG04 showed the highest of stratification ratio of ginseng seed. After 16 weeks, the reformulating treatment of T. flavus isolates GG01 and GG04 significantly enhanced dehiscence of ginseng seed by about 81% compared to the untreated control. The candidate's treatment of T. flavus GG01 and GG04 showed the highest decreasing rate of 93% in seed coat hardness for 112 days in dehiscence period. The results suggested that the pre-inoculation of T. flavus GG01 and GG04 found to be very effective applications in improving dehiscence and germination of ginseng seed.

Molecular Characterization of Apple stem grooving virus Isolated from Talaromyces flavus

  • Shim Hye-Kyung;Hwang Kyu-Hyon;Shim Chang-Ki;Son Su-Wan;Kim Dong-Giun;Choi Yong-Mun;Chung Young-Jae;Kim Dae-Hyun;Jee Hyeong-Jin;Lee Suk-Chan
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.260-264
    • /
    • 2006
  • Talaromyces flavus mediates the transmission of Apple stem grooving virus (ASGV) to several host plants. The ASGV-F carried by T.flavus was partially purified from the fungus. Based on sequence analysis and homology searches, this is closely related to other ASGV strains isolated from host plants. The partially purified viral coat protein (CP) was separated on a 12% SDS-polyacrylamide gel and analyzed by Western blotting with an ASGV anti-serum. A single band at 28 kDa reacted with the ASGV anti-serum. The deduced amino acid sequence of the ORF-l showed conserved domains, including an NTP-binding helicase motif, GFAGSGKT. The amino acid sequences of the helicase and CP showed strong homology to other ASGV strains (98%). All ASGV isolated from plants and fungi had salt bridges composed of the CP and the GFAGSGKT motif of the helicase, which are commonly conserved in plant viruses. These results suggest that ASGV-F is one of ASGV strains isolated from T.flavus based on sequence similarity as well as the serological analysis of CP.

Fungs flora of paddy fields in Korea. - III. Ascomycetes - (한국 논 토양중의 균류에 관한 연구 - III . 자낭균류 -)

  • Kyung Hee MIN;Tadayoshi ITO;Tatsuo YOKOYAMA
    • Korean Journal of Microbiology
    • /
    • v.20 no.2
    • /
    • pp.80-88
    • /
    • 1982
  • Soil microfungi of the paddy fields in Korea were isolated by the dilution plate method from soil samples of two selected sites. It was concluded that 14 species among 30 species identified were undescribed fungi in Korea. Among them, 7 species of Ascomycetous fungi were described in this paper as new to Korea. Species of the genus Talaromyces were found to be dominant in paddy field soils and they consisted of Talaromyces flavus var. flavus, T. panasenroi, T.stipitalus and T.trachyspermus. Special attention was paid on the predominant occurrance of Westerdyrella multispora which produced globose to subglobose pseudothecia containing 32 spored asci with multiseptate, cylindrical ascospores. A cellulose decomposing ascomycete, Chaetomium globosum, was also found which produce black, ostiolate perithecia furnished with numerous, wavy to undulate terminal hairs. They contain evansecent, clubshaped, 8 spored asci with lemon-shaped, olive brown ascospores. Another ascomycte, Emericellopsis terricola with Acremonium anamorph, waas isolated from two sites.

  • PDF

Diversity of Aspergillus, Penicillium, and Talaromyces Species Isolated from Freshwater Environments in Korea

  • Heo, Inbeom;Hong, Kyeongyeon;Yang, Hyejin;Lee, Hyang Burm;Choi, Young-Joon;Hong, Seung-Beom
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.12-19
    • /
    • 2019
  • In order to elucidate the fungal diversity and community structure in freshwater environments, numerous fungal strains were isolated from freshwater, submerged soils, twigs, dead insects, etc. Among them, the present study has focused specifically on Aspergillus, Penicillium, and Talaromyces species, which produce diverse useful metabolites in general. Twelve strains of Aspergillus isolated were identified as A. japonicus (n = 5), A. tubingensis (3), A. niger (2), and A. flavus (2), 10 strains of which belong to Aspergillus section Nigri, named black Aspergillus. Eight strains of Penicillium were identified as P. brasilianim (n = 3), P. oxalicum (2), P. crustosum (1), P. expansum (1), and P. piscarium (1). Two different strains of Talaromyces were identified as T. pinophilus and T. versatilis. Thus far, Penicillium piscarium and Talaromyces versatilis have been unrecorded in Korea, for which we provide detailed morphological and molecular characteristics.

Major Fe-Superoxide Dismutase (FeSOD) Activity in Pseudomonas putida is Essential for Survival Under Conditions of Oxidative Stress During Microbial Challenge and Nutrient Limitation

  • Kim, Young-Cheol;Kim, Cheol-Soo;Cho, Baik-Ho;Anderson, Anne-J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.859-862
    • /
    • 2004
  • An isolate of Pseudomonas putida has been found to aggressively colonize root tips and induce plant resistance to Fusarium wilt. However, P. putida mutants lacking Fe-superoxide dismutase (SOD) or both FeSOD and MnSOD activities are less competitive in root tip colonization. In the current study, the growth of an FeSOD mutant was found to be more sensitive than that of the wild-type or a MnSOD mutant to oxidative stress imposed by paraquat treatment and culturing with the soil fungus Talaromyces flavus, which generates reactive oxygen species. Also, the loss of culturability with an aging stationary-phase culture was greater for a double SOD mutant than an FeSOD mutant, while no reduction in culturability was observed with the wild-type and a MnSOD mutant under the same protracted stationary-phase conditions. Accordingly, it was concluded that FeSOD activity is the major form of SOD in P. putida and plays an essential role in survival under stress conditions when increased oxidative stress is encountered.

Distribution of Alcohol-tolerant Microfungi in Paddy Field Soils

  • Choi, Soon-Young
    • Mycobiology
    • /
    • v.31 no.4
    • /
    • pp.191-195
    • /
    • 2003
  • Ethanol treatment method was attempted for the selective isolation of ethanol-tolerant fungi from two sites of rice paddy fields around Seoul area. The vertical and seasonal fluctuation of the fungal population were also investigated. The ethanol-tolerant fungi were Talaromyces stipitatus, T. flavus var. flavus, T. helicus var. major, Eupenicillium javanicum, Emericellopsis terricolor, Pseudourotium zonatum, Aspergillus flavus, Cladosporium cladosporioides, Penicillium frequentans, P. janthinellum, and P. verruculosum. The most dominant species isolated by this method was T. stipitatus. It was found that the numbers of fungal species and colony forming units(CFUs) of ethanol-tolerant fungi were higher in Ascomycota than in Deuteromycota. A particular tendency appeared the highest CFUs in autumn, but lower in spring and winter. T. stipitatus was the dominant species of ethanol tolerant microfungi. This result would suggest that membrane lipid composition of ethanol-tolerant fungi isolated from the soils may play on important role in the ethanol tolerance.

Diversity and Mycotoxin Production of Aspergillus flavus in Stored Peanut (저장 땅콩에서 분리된 Aspergillus flavus의 다양성 및 독소생성능)

  • Choi, Jung-Hye;Nah, Ju-Young;Lee, Mi-Jeong;Lim, Su-Bin;Lee, Theresa;Kim, Jeomsoon
    • The Korean Journal of Mycology
    • /
    • v.49 no.3
    • /
    • pp.303-313
    • /
    • 2021
  • Peanuts in storage were estimated for mycotoxigenic fungi and mycotoxins. Peanut samples collected from storages in Gochang were mainly contaminated with Fusarium (17.2±28.0%), Penicillium (12.4±28.0%), and Aspergillus (8.0±7.6%). Other genera, including Talaromyces, Rhizopus, Rhizoctonia, Trichocladium, Clonostachys, Mucor, Chaetomium, Trametes, Epicoccum, and Humicola, were also found. Although aflatoxins were not detected in the peanut samples, 29 strains of Aspergillus flavus were identified using molecular marker genes. Among them, 17 selected isolates produced aflatoxins in solid culture media ranging from 0.61-187.82 ㎍/kg. All of them could produce both aflatoxin B1 and B2 and some (n=5) produced additional G1, G2, or both. This study is the first report that A. flavus stains obtained from Korean stored peanut are aflatoxigenic.

Ecopathological Analysis of Apple stem grooving virus-K Harboring Talaromyces flavus

  • Shim Hye-Kyung;Hwang Kyu-Hyon;Shim Chang-Ki;Hong Seung-Beom;Son Su-Wan;Kim Dong-Giun;Choi Yong-Mun;Chung Young-Jae;Kim Dae-Hyun;Jee Hyeong-Jin;Lee Suk-Chan
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.248-254
    • /
    • 2006
  • Pear black necrotic leaf spot (PBNLS) on pear trees (Pyrus pyrifolia) is caused by a Korean isolate of Apple stem grooving virus (ASGV-K). Yellow spots were detected in Phaseolus vulgaris (kidney bean) and Chenopodium quinoa which were grown near the diseased pears in year 2000 through 2003. The ASGV-K, the causative agent of PBNLS, was detected from the symptoms of the diseased kidney bean plant and C. quinoa. ASGV-harboring fungi were also isolated from symptomatic plants and from soils surrounding the infected plants. The ASGV-harboring fungus was identified and characterized as Talaromyces flavus. Ecopathological studies showed that the number of ASGV-harboring fungi on the pear leaves was not correlated with differences in temperature or severity of symptoms. Additionally, there was no difference in fungus frequency among the orchard locations or different host plants. Although the frequency of fungi isolated from the soil was not affected by changes in temperature or location, the fungi occurred at higher densities in the rhizosphere than in the plants themselves.

Isolation and Identification of Fungal Species from the Insect Pest Tribolium castaneum in Rice Processing Complexes in Korea

  • Yun, Tae-Seong;Park, Sook-Young;Yu, Jihyun;Hwang, Yujin;Hong, Ki-Jeong
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.356-366
    • /
    • 2018
  • The red flour beetle, Tribolium castaneum, is one of the most common and economically important pests of stored cereal products worldwide. Furthermore, these beetles can act as vectors for several fungal post-harvest diseases. In this study, we collected T. castaneum from 49 rice processing complexes (RPCs) nationwide during 2016-2017 and identified contaminating fungal species on the surface of the beetles. Five beetles from each region were placed on potato dextrose agar media or Fusarium selection media after wet processing with 100% relative humidity at $27^{\circ}C$ for one week. A total of 142 fungal isolates were thus collected. By sequence analysis of the internal transcribed spacer region, 23 fungal genera including one unidentified taxon were found to be associated with T. castaneum. The genus Aspergillus spp. (28.9%) was the most frequently present, followed by Cladosporium spp. (12.0%), Hyphopichia burtonii (9.2%), Penicillium spp. (8.5%), Mucor spp. (6.3%), Rhizopus spp. (5.6%), Cephaliophora spp. (3.5%), Alternaria alternata (2.8%) and Monascus sp. (2.8%). Less commonly identified were genera Fusarium, Nigrospora, Beauveria, Chaetomium, Coprinellus, Irpex, Lichtheimia, Trichoderma, Byssochlamys, Cochliobolus, Cunninghamella, Mortierella, Polyporales, Rhizomucor and Talaromyces. Among the isolates, two known mycotoxin-producing fungi, Aspergillus flavus and Fusarium spp. were also identified. This result is consistent with previous studies that surveyed fungal and mycotoxin contamination in rice from RPCs. Our study indicates that the storage pest, T. castaneum, would play an important role in spreading fungal contaminants and consequently increasing mycotoxin contamination in stored rice.