• Title/Summary/Keyword: Tandem accelerator

Search Result 21, Processing Time 0.031 seconds

Development of neutron time-of-flight measurement system for 1.7-MV tandem proton accelerator with lithium target

  • Lim, Soobin;Kim, Donghwan;Kang, Jin-Goo;Dang, Jeong-Jeung;Lee, Pilsoo;Kim, Geehyun;Chung, Kyoung-Jae;Hwang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.437-441
    • /
    • 2022
  • In this study, we developed a neutron time-of-flight (nTOF) measurement system for a 1.7-MV tandem proton accelerator with a target covered with 300-nm-thick lithium (Li) layer. With implementation of beam chopping module after its ion source, the accelerator is configured to operate in pulsed-beam mode with a pulse width <50 ns at 20-kHz repetition rate. This enables the gamma flash-type nTOF measurement system to identify the neutron generated with 3-MeV proton beam energy. The nTOF system consists of a 30" cylindrical NaI(Tl) and four stilbene scintillation detectors. The NaI(Tl) scintillator is placed 50 cm from the Li target to measure the time of beam irradiation on the target, and the stilbene detectors are placed 2 and 2.4 m away to measure nTOF at each location. The nTOF system successfully measured the generated neutron energy at irradiated proton energies of 2.6 and 3.0 MeV with an average energy resolution of 15%.

Lower the Detection Limits of Accelerator Mass Spectrometry

  • John A., Eliades;Song, Jong-Han;Kim, Jun-Gon;Kim, Jae-Yeol;O, Jong-Ju;Kim, Jong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.243-244
    • /
    • 2013
  • Over the past 15 years, several groups have incorporated radio-frequency quadrupole (RFQ) based instruments before the accelerator in accelerator mass spectrometry (AMS) systems for ion-gas interactions at low kinetic energy (<40 eV). Most AMS systems arebased on a tandem accelerator, which requires negative ions at injection. Typically, AMS sensitivity abundance ratios for radioactive-to-stable isotope are limited to Xr/Xs >10^-15, and the range of isotopes that can be analyzed is limited because of theneed to produce rather large negative ion beams and the presence of atomic isobaric interferences after stripping. The potential of using low-kinetic energy ion-gas interactions for isobar suppression before the accelerator has been demonstrated for several negative ion isobar systems with a prototype RFQ system incorporated into the AMS system at IsoTrace Laboratory, Canada (Ontario, Toronto). Requisite for any such RFQ system applied to very rare isotope analysis is large transmission of the analyte ion. This requires proper phase-space matching between the RFQ acceptance and the ion beam phase space (e.g. 35 keV, ${\varphi}3mm$, +-35 mrad), and the ability to control the average ion energy during interactions with the gas. A segmented RFQ instrument is currently being designed at Korea Institute for Science and Technology (한국과학기술연구원, KIST). It will consist of: a) an initial static voltage electrode deceleration region, to lower the ion energy from 35 keV down to <40 eV at injection into the first RFQ segment; b) the segmented quadrupole ion-gas interaction region; c) a static voltage electrode re-acceleration region for ion injection into a tandem accelerator. Design considerations and modeling will be discussed. This system should greatly lower the detection limits of the 6 MV AMS system currently being commissioned at KIST. As an example, current detection sensitivity of 41Ca/Ca is limited to the order of 10^-15 while the 41Ca/Ca abundance in modern samples is typically 41Ca/Ca~10^-14 - 10^-15. The major atomic isobaric interference in AMS is 41K. Proof-of-principal work at IsoTrace Lab. has demonstrated that a properly designed system can achieve a relative suppression of KF3-/41CaF3- >4 orders of magnitude while maintaining very high transmission of the 41CaF3- ion. This would lower the 41Ca detection limits of the KIST AMS system to at least 41Ca/Ca~10^-19. As Ca is found in bones and shells, this would potentially allow direct dating of valuable anthropological archives and archives relevant to our understanding of the most pronounced climate change events over the past million years that cannot be directly dated with the presently accessible isotopes.

  • PDF

Ion Optical Study on the $He^{++}$ Beam Transport System of the SNU 1.5-MV Tandem Van do Graaff Accelerator (SNU 1.5-MV 직렬형 반데그라프 가속기의 $He^{++}$ 빔 소송계에 대한 이온광학적 고찰)

  • Hyen-Cheol JO;Young-Dug BAE;Hae-iLL BAK
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.426-437
    • /
    • 1991
  • The $He^{++}$ beam transport system of the SNU 1.5-MV Tandem Van de Graaff accelerator is analysed by ion optical approach. The program OPTRANS is developed to determine the optimum operating conditions of each ion optical component and to simulate ion beam transport. First order matrix formalism is used and the space charge effect is neglected. Optimum operating conditions for the transport of 0.5~3.0 MeV $He^{++}$ beam are determined by the use of the program OPTRANS. Initial ion beam omittance is assumed to be 0.5$\times$80.0 mm.mrad from the structure of the extraction electrode and the experiment of ion beam extraction. ion beam transport characteristics of each ion optical component according to the variation of the operating conditions are investigated, and operating conditions to minimize the beam size at each slit, stripping foil, and target are calculated. Optimum operating conditions obtained from the experiment of ion beam transport show a discrepancy of less than 15% compared with the calculated ones. From the simulation and experiment of ion beam trans-port, the validity of the calculated optimum operating conditions and the usefulness of the program OPTRANS are verified.

  • PDF

236U accelerator mass spectrometry with a time-of-flight and energy detection system

  • Li Zheng;Hiroyuki Matsuzaki;Takeyasu Yamagata
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4636-4643
    • /
    • 2022
  • A time-of-flight and energy (TOF-E) detection system for the measurement of 236U accelerator mass spectrometry (AMS) has been developed to improve the 236U/238U sensitivity at Micro Analysis Laboratory, Tandem accelerator (MALT), The University of Tokyo. With observing TOF distribution of 235U, 236U and 238U, this TOF-E detection system has clearly separated 236U from the interference of 235U and 238U when measuring three kinds of uranium standards. In addition, we have developed a novel method combining kernel-based density estimation method and multi-Gaussian fitting method to estimate the 236U/238U sensitivity of the TOF-E detection system. Using this new estimation method, 3.4 × 10-12 of 236U/238U sensitivity and 1.9 ns of time resolution are obtained. 236U/238U sensitivity of TOF-E detection system has improved two orders of magnitude better than that of previous gas ionization chamber. Moreover, unknown species other than uranium isotopes were also observed in the measurement of a surface soil sample, which has demonstrated that TOF-E detection system has a higher sensitivity in particle identification. With its high sensibility in mass determination, this TOF-E detection system could also be used in other heavy isotope AMS.

Radio-Carbon Age Determination by Tandem Accelerator Mass Spectrometry Technique and Its Application To The Korean Sea (탄뎀가속기에 의한 방사성탄소 년대측정과 한국해에의 적용)

  • Suk, Bong-Chool;Toshio Nakamura;Nobuyuki Nakai;Asahiko Taira
    • The Korean Journal of Quaternary Research
    • /
    • v.4 no.1
    • /
    • pp.27-40
    • /
    • 1990
  • $^{14}C$ age dating by AMS (accelerator mass spectrometry) technique was performed on twenty five small sized fossil shells and one peat taken from the sixteen piston cores in the southern and southeastern Korean Sea. AMS technique is available to date only a few milligram of amorphous carbons compare than conventional dating technique. It is described in detail of sample pre-treatment and experimental, and applied to the reconstruction of the sea level changes since the late Pleistocene in the Korean Sea. Dated age ranges from 520$\pm$100 to older than 33,500 years. Sedimentary facies in the study area represents a different environmental set which is affected by sea level fluctuation since the late Pleistocene.

  • PDF

Genetic and Functional Analyses of the DKxanthene Biosynthetic Gene Cluster from Myxococcus stipitatus DSM 14675

  • Hyun, Hyesook;Lee, Sunjin;Lee, Jong Suk;Cho, Kyungyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1068-1077
    • /
    • 2018
  • DKxanthenes are a class of yellow secondary metabolites produced by myxobacterial genera Myxococcus and Stigmatella. We identified a putative 49.5 kb DKxanthene biosynthetic gene cluster from Myxococcus stipitatus DSM 14675 by genomic sequence and mutational analyses. The cluster consisted of 15 genes (MYSTI_06004-MYSTI_06018) encoding polyketide synthases, non-ribosomal peptide synthases, and proteins with unknown functions. Disruption of the genes by plasmid insertion resulted in defects in the production of yellow pigments. High-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analyses indicated that the yellow pigments produced by M. stipitatus DSM 14675 might be novel DKxanthene derivatives. M. stipitatus did not require DKxanthenes for the formation of heat-resistant viable spores, unlike Myxococcus xanthus. Furthermore, DKxanthenes showed growth inhibitory activity against the fungi Aspergillus niger, Candida albicans, and Rhizopus stolonifer.

Vacuum Chamber Design for the PLS Storage Ring (포항 가속기 저장링 진공 chamber 설계)

  • 김창균;길계환;최우천;박수용
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.24-27
    • /
    • 1992
  • The Pohang Accelerator Lab is constructing a 2 GeV synchrotron radiation source. In order to achieve a beam lifetime of 5 hours or more, the average pressure in the vacuum chamber will be kept in the nano Torr range. Each chamber consists of a top and a bottom piece, which are machined separately and welded together. The chamber material is A1 5083-H321. The pumping system has nine sets of lumped NEGs in tandem with ion pumps installed beneath photon stops, and six ion pumps per superperiod. A prototype chamber will be machined by February 1992. After various tests with the prototype chamber, the vacuum chamber design will be refined.

  • PDF

Defect Formatìon and Annealìng Behavìor in MeV Si Self-Implanted Silicon (MeV Si 자기 이온주입된 단결정 Silicon내의 결함 거동)

  • Cho, Nam-Hoon;Jang, Ki-Wan;Suh, Kyung-Soo;Lee, Jeoung-Yong;Ro, Jae-Sang
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.733-741
    • /
    • 1996
  • In this study MeV Si self ion implantations were done to reveal the intrinsic behavior of defect formation by excluding the possibility of chemical interactions between substrate atoms and dopant ones. Self implantations were conducted using Tandem Accelerator with energy ranges from 1 to 3 MeV. Defect formation by high energy ion implantation has a significant characteristics in that the lattice damage is concentrated near Rp and isolated from the surface. In order to investigate the energy dependence on defect formation, implantation energies were varied from 1 to 3 MeV under a constant dose of $1{\times}10^{15}/cm^2$. RBS channe!ed spectra showed that the depth at which as-implanted damaged layer formed increases as energy increases and that near surface region maintains better crystallinity as energy increases. Cross sectional TEM results agree well with RBS ones. In a TEM image as-implanted damaged layer appears as a dark band, where secondary defects are formed upon annealing. In the case of 2 MeV $Si^+$ self implantation a critical dose for the secondary defect formation was found to be between $3{\times}10^{14}/cm^24$ and $5{\times}10^{14}/cm^2$. Upon annealing the upper layer of the dark band was removed while the bottom part of the dark band did not move. The observed defect behavior by TEM was interpreted by Monte Carlo computer simulations using TRIM-code. SIMS analyses indicated that the secondary defect formed after annealing gettered oxygen impurities existed in silicon.

  • PDF

Deastringent Peel Extracts of Persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) Protect Neuronal PC-12 and SH-SY5Y Cells against Oxidative Stress

  • Jeong, Da-Wool;Cho, Chi Heung;Lee, Jong Suk;Lee, Seung Hwan;Kim, Taewan;Kim, Dae-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1094-1104
    • /
    • 2018
  • The peel of astringent persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) is a by-product of dried persimmon (gotgam). We investigated if deastringent peel extracts of persimmon cv. Cheongdo-Bansi had antioxidative and neuroprotective properties. Two different extracts were prepared: thermally and nonthermally treated persimmon peel extracts (TPE and NTPE, respectively). Both TPE and NTPE were fractionated sequentially in n-hexane, chloroform, ethyl acetate, n-butanol, and water. The TPE and NTPE ethyl acetate fractions had the highest total phenolic and flavonoid contents as well as antioxidant capacities among all the fractions. Pretreatment of neuronal PC-12 and SH-SY5Y cells with the TPE and NTPE ethyl acetate fractions increased cell viability after exposure to oxidative stress. The ethyl acetate fraction of TPE attenuated oxidative stress inside both PC-12 and SH-SY5Y cells more effectively than that of NTPE. Furthermore, the TPE and NTPE ethyl acetate fractions inhibited acetylcholinesterase and butyrylcholinesterase. Analysis of ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry results revealed gallic acid, kaempferol, kaempferol-3-O-galactoside, kaempferol-3-O-glucoside, quercetin, quercetin3-O-galactoside, quercetin-3-O-galactoside-2'-O-gallate, and quercetin-3-O-glucoside as the major phenolics of the TPE and NTPE ethyl acetate fractions. Taken together, these results suggest that the ethyl acetate fraction of deastringent persimmon peel is rich in antioxidants and has potential as a functional food to reduce oxidative stress.

Measurement of Gamma-ray Yield from Thick Carbon Target Irradiated by 5 and 9 MeV Deuterons

  • Araki, Shouhei;Kondo, Kazuhiro;Kin, Tadahiro;Watanabe, Yukinobu;Shigyo, Nobuhiro;Sagara, Kenshi
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.16-20
    • /
    • 2017
  • Background: The design of deuteron accelerator neutron source facilities requires reliable yield estimation of gamma-rays as well as neutrons from deuteron-induced reactions. We have so foar measured systematically double-differential thick target neutron yields (DDTTNYs) for carbon, aluminum, titanium, copper, niobium, and SUS304 targets. In the neutron data analysis, the events of gamma-rays taken simultaneously were treated as backgrounds. In the present work, we have re-analyzed the experimental data for a thick carbon target with particular attention to gamma-ray events. Materials and Methods: Double-differential thick target gamma-ray yields from carbon irradiated by 5 and 9 MeV deuterons were measured using an NE213 liquid organic scintillator at the Kyushu University Tandem accelerator Laboratory. The gamma-ray energy spectra were obtained by an unfolding method using FORIST code. The response functions of the NE213 detector were calculated by EGS5 incorporated in PHITS code. Results and Discussion: The measured gamma-ray spectra show some pronounced peaks corresponding to gamma-ray transitions between discrete levels in residual nuclei, and the measured angular distributions are almost isotropic for both the incident energies. Conclusion: PHITS calculations using INCL, GEM, and EBITEM models reproduce the spectral shapes and the angular distributions generally well, although they underestimate the absolute gamma-ray yields by about 20%.